一步步搭建循环神经网络
将在numpy中实现一个循环神经网络
Recurrent Neural Networks (RNN) are very effective for Natural Language Processing and other sequence tasks because they have "memory". 他们可以读取一个输入 (x^{langle t angle}) (such as words) one at a time, 并且通过隐藏层激活 从一个 time-step 传递到下一个 time-step 来记住一些信息(information/context). 这允许单向RNN(uni-directional RNN)从过去获取信息来处理后面的输入,双向RNN(A bidirection RNN) 可以从过去和未来中获取上下文。
Notation:
-
上标(Superscript) ([l]) 表示 (l^{th}) layer.
- Example: (a^{[4]}) is the (4^{th}) layer activation. (W^{[5]}) and (b^{[5]}) are the (5^{th}) layer parameters.
-
Superscript ((i)) 表示 (i^{th}) example.
- Example: (x^{(i)}) is the (i^{th}) training example input.
-
Superscript (langle t angle) 表示 (t^{th}) time-step.
- Example: (x^{langle t angle}) 表示输入(x) 的 (t^{th}) time-step. (x^{(i)langle t angle}) 表示输入(x) 的 第(i)个样本 的(t^{th}) timestep.
-
下标(Lowerscript) (i) 表示 (i^{th}) entry of a vector.
- Example: (a^{[l]}_i) 表示 (l) 层中的 (i^{th}) entry of the activations.
Example:
- (a^{(2)[3]<4>}_5) denotes the activation of the 2nd training example (2), 3rd layer [3], 4th time step <4>, and 5th entry in the vector.
import numpy as np
from rnn_utils import *
1. Forward propagation for the basic Recurrent Neural Network
实现一个基本的RNN结构,这里,(T_x = T_y).
3D Tensor of shape ((n_{x},m,T_{x}))
- The 3-dimensional tensor (x) of shape ((n_x,m,T_x)) represents the input (x) that is fed into the RNN.
Taking a 2D slice for each time step: (x^{langle t angle})
- At each time step, we'll use a mini-batches of training examples (not just a single example).
- So, for each time step (t), we'll use a 2D slice of shape ((n_x,m)).
- We're referring to this 2D slice as (x^{langle t
angle}). The variable name in the code is
xt
.
Definition of hidden state (a)
- The activation (a^{langle t angle}) that is passed to the RNN from one time step to another is called a "hidden state."
Dimensions of hidden state (a)
- Similar to the input tensor (x), the hidden state for a single training example is a vector of length (n_{a}).
- If we include a mini-batch of (m) training examples, the shape of a mini-batch is ((n_{a},m)).
- When we include the time step dimension, the shape of the hidden state is ((n_{a}, m, T_x))
- We will loop through the time steps with index (t), and work with a 2D slice of the 3D tensor.
- We'll refer to this 2D slice as (a^{langle t angle}).
- In the code, the variable names we use are either
a_prev
ora_next
, depending on the function that's being implemented. - The shape of this 2D slice is ((n_{a}, m))
Dimensions of prediction (hat{y})
- Similar to the inputs and hidden states, (hat{y}) is a 3D tensor of shape ((n_{y}, m, T_{y})).
- (n_{y}): number of units in the vector representing the prediction.
- (m): number of examples in a mini-batch.
- (T_{y}): number of time steps in the prediction.
- For a single time step (t), a 2D slice (hat{y}^{langle t angle}) has shape ((n_{y}, m)).
- In the code, the variable names are:
y_pred
: (hat{y})yt_pred
: (hat{y}^{langle t angle})
实现RNN具体步骤:
-
Implement the calculations needed for one time-step of the RNN. (实现 RNN的一个时间步 所需要计算的东西)
-
Implement a loop over (T_x) time-steps in order to process all the inputs, one at a time. (在 (T_x) 时间步上实现一个循环,以便一次处理所有输入)
1.1 RNN cell
循环神经网络可以看作是单元的重复(repetition),首先要实现单个时间步的计算,下图描述了RNN单元的单个时间步的操作。
Figure 2: Basic RNN cell. Takes as input (x^{langle t angle}) (current input) and (a^{langle t - 1 angle}) (previous hidden state containing information from the past), and outputs (a^{langle t angle}) which is given to the next RNN cell and also used to predict (y^{langle t angle})
Instructions:
-
Compute the hidden state with tanh activation: (a^{langle t angle} = anh(W_{aa} a^{langle t-1 angle} + W_{ax} x^{langle t angle} + b_a)).
-
Using your new hidden state (a^{langle t angle}), compute the prediction (hat{y}^{langle t angle} = softmax(W_{ya} a^{langle t angle} + b_y)). We provided you a function:
softmax
. -
Store ((a^{langle t angle}, a^{langle t-1 angle}, x^{langle t angle}, parameters)) in cache
-
Return (a^{langle t angle}) , (y^{langle t angle}) and cache
We will vectorize over (m) examples. Thus, (x^{langle t angle}) will have dimension ((n_x,m)), and (a^{langle t angle}) will have dimension ((n_a,m)).
# GRADED FUNCTION: rnn_cell_forward
def rnn_cell_forward(xt, a_prev, parameters):
"""
Implements a single forward step of the RNN-cell as described in Figure (2)
Arguments:
xt -- your input data at timestep "t", numpy array of shape (n_x, m).
a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
parameters -- python dictionary containing:
Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
ba -- Bias, numpy array of shape (n_a, 1)
by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
Returns:
a_next -- next hidden state, of shape (n_a, m)
yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
cache -- tuple of values needed for the backward pass, contains (a_next, a_prev, xt, parameters)
"""
# Retrieve parameters from "parameters"
Wax = parameters["Wax"]
Waa = parameters["Waa"]
Wya = parameters["Wya"]
ba = parameters["ba"]
by = parameters["by"]
### START CODE HERE ### (≈2 lines)
# compute next activation state using the formula given above
a_next = np.tanh(np.dot(Waa, a_prev) + np.dot(Wax, xt) + ba)
# compute output of the current cell using the formula given above
yt_pred = softmax(np.dot(Wya, a_next) + by)
### END CODE HERE ###
# store values you need for backward propagation in cache
cache = (a_next, a_prev, xt, parameters)
return a_next, yt_pred, cache
测试:
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
Waa = np.random.randn(5,5)
Wax = np.random.randn(5,3)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}
a_next, yt_pred, cache = rnn_cell_forward(xt, a_prev, parameters)
print("a_next[4] = ", a_next[4])
print("a_next.shape = ", a_next.shape)
print("yt_pred[1] =", yt_pred[1])
print("yt_pred.shape = ", yt_pred.shape)
a_next[4] = [ 0.59584544 0.18141802 0.61311866 0.99808218 0.85016201 0.99980978
-0.18887155 0.99815551 0.6531151 0.82872037]
a_next.shape = (5, 10)
yt_pred[1] = [0.9888161 0.01682021 0.21140899 0.36817467 0.98988387 0.88945212
0.36920224 0.9966312 0.9982559 0.17746526]
yt_pred.shape = (2, 10)
1.2 RNN的前向传播
一个RNN是刚刚构建的 cell 的重复, 如果输入的数据序列经过10个时间步,那么将复制RNN单元10次,每个单元将前一个单元中的hidden state((a^{langle t-1 angle})) 和当前时间步的输入数据((x^{langle t angle})) 作为输入。它输出当前 time-step的 a hidden state ((a^{langle t angle})) and a prediction ((y^{langle t angle})).
Figure 3: Basic RNN. The input sequence (x = (x^{langle 1 angle}, x^{langle 2 angle}, ..., x^{langle T_x angle})) is carried over (T_x) time steps. The network outputs (y = (y^{langle 1 angle}, y^{langle 2 angle}, ..., y^{langle T_x angle})).
Instructions:
-
创建 维度((n_{a}, m, T_{x})) 的零向量zeros ((a)) 将保存 由RNN计算的 所有 the hidden states
a
. -
使用 (a_0) (initial hidden state) 初始化 the "next" hidden state .
-
开始循环所有的 time-step, your incremental index is (t) :
-
使用
rnn_cell_forward
函数 更新 "next" hidden state and the cache. -
使用 (a) 来保存 "next" hidden state ((t^{th}) position).
-
使用 (y) 来保存预测值(prediction).
-
把
cache
保存到caches
列表中.
-
-
返回 (a), (y) and caches
Hints:
- Create a 3D array of zeros, (a) of shape ((n_{a}, m, T_{x})) that will store all the hidden states computed by the RNN.
- Create a 3D array of zeros, (hat{y}), of shape ((n_{y}, m, T_{x})) that will store the predictions.
- Note that in this case, (T_{y} = T_{x}) (the prediction and input have the same number of time steps).
- Initialize the 2D hidden state
a_next
by setting it equal to the initial hidden state, (a_{0}). - At each time step (t):
- Get (x^{langle t
angle}), which is a 2D slice of (x) for a single time step (t).
- (x^{langle t angle}) has shape ((n_{x}, m))
- (x) has shape ((n_{x}, m, T_{x}))
- Update the 2D hidden state (a^{langle t
angle}) (variable name
a_next
), the prediction (hat{y}^{langle t angle}) and the cache by runningrnn_cell_forward
.- (a^{langle t angle}) has shape ((n_{a}, m))
- Store the 2D hidden state in the 3D tensor (a), at the (t^{th}) position.
- (a) has shape ((n_{a}, m, T_{x}))
- Store the 2D (hat{y}^{langle t
angle}) prediction (variable name
yt_pred
) in the 3D tensor (hat{y}_{pred}) at the (t^{th}) position.- (hat{y}^{langle t angle}) has shape ((n_{y}, m))
- (hat{y}) has shape ((n_{y}, m, T_x))
- Append the cache to the list of caches.
- Get (x^{langle t
angle}), which is a 2D slice of (x) for a single time step (t).
- Return the 3D tensor (a) and (hat{y}), as well as the list of caches.
# GRADED FUNCTION: rnn_forward
def rnn_forward(x, a0, parameters):
"""
Implement the forward propagation of the recurrent neural network described in Figure (3).
Arguments:
x -- Input data for every time-step, of shape (n_x, m, T_x).
a0 -- Initial hidden state, of shape (n_a, m)
parameters -- python dictionary containing:
Waa -- Weight matrix multiplying the hidden state, numpy array of shape (n_a, n_a)
Wax -- Weight matrix multiplying the input, numpy array of shape (n_a, n_x)
Wya -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
ba -- Bias numpy array of shape (n_a, 1)
by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
Returns:
a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
y_pred -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
caches -- tuple of values needed for the backward pass, contains (list of caches, x)
"""
# Initialize "caches" which will contain the list of all caches
caches = []
# Retrieve dimensions from shapes of x and parameters["Wya"]
n_x, m, T_x = x.shape
n_y, n_a = parameters["Wya"].shape
### START CODE HERE ###
# initialize "a" and "y" with zeros (≈2 lines)
a = np.zeros((n_a, m, T_x))
y_pred = np.zeros((n_y, m, T_x))
# Initialize a_next (≈1 line)
a_next = a0
# loop over all time-steps
for t in range(T_x):
# Update next hidden state, compute the prediction, get the cache (≈1 line)
a_next, yt_pred, cache = rnn_cell_forward(x[:,:,t], a_next, parameters)
# Save the value of the new "next" hidden state in a (≈1 line)
a[:,:,t] = a_next
# Save the value of the prediction in y (≈1 line)
y_pred[:,:,t] = yt_pred
# Append "cache" to "caches" (≈1 line)
caches.append(cache)
### END CODE HERE ###
# store values needed for backward propagation in cache
caches = (caches, x)
return a, y_pred, caches
测试:
np.random.seed(1)
x = np.random.randn(3,10,4)
a0 = np.random.randn(5,10)
Waa = np.random.randn(5,5)
Wax = np.random.randn(5,3)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Waa": Waa, "Wax": Wax, "Wya": Wya, "ba": ba, "by": by}
a, y_pred, caches = rnn_forward(x, a0, parameters)
print("a[4][1] = ", a[4][1])
print("a.shape = ", a.shape)
print("y_pred[1][3] =", y_pred[1][3])
print("y_pred.shape = ", y_pred.shape)
print("caches[1][1][3] =", caches[1][1][3])
print("len(caches) = ", len(caches))
a[4][1] = [-0.99999375 0.77911235 -0.99861469 -0.99833267]
a.shape = (5, 10, 4)
y_pred[1][3] = [0.79560373 0.86224861 0.11118257 0.81515947]
y_pred.shape = (2, 10, 4)
caches[1][1][3] = [-1.1425182 -0.34934272 -0.20889423 0.58662319]
len(caches) = 2
我们构建了循环神经网络的前向传播函数,这对于某些应用程序来说已经足够好了,但是它还存在梯度消失(vanishing gradient )的问题。当每个输出 (y^{langle t angle}) 是根据 局部上下文("local" context) 来预测时,效果较好。(意思是输入 (x^{langle t' angle}) ,其中 (t') 与 (t) 相隔不太远).
接下来要构建一个更加复杂的 LSTM模型,它可以更好地解决梯度消失的问题,LSTM能够更好地记住一条信息,并且可以在很多time-steps中保存。
2. Long Short-Term Memory (LSTM) network
下图是LSTM模块:
Figure 4: LSTM-cell. 它跟踪和更新每个time-step上的 单元状态(cell state) 或 记忆变量(memory variable) (c^{langle t angle}), 这跟 (a^{langle t angle}) 不同.
先来实现一个LSTM单元,只执行一个时间步,然后在循环中调用,以处理所有输入数据。
About the gates
- Forget gate
假设,我们正在阅读文本中的单词,并希望使用LSTM来跟踪语法结构,比如,主语是单数(singular)还是复数(plural)。如果主语从单数变为复数,我们需要找到一种方法来 摆脱 我们先前存储的单复数状态的记忆值。在LSTM中,遗忘门是这样做的:
其中, (W_f) 是控制遗忘门的权值,我们 concatenate ([a^{langle t-1 angle}, x^{langle t angle}]) and multiply by (W_f),结果是得到了一个 vector (Gamma_f^{langle t angle}),其值在0 与 1 之间。这个 forget gate vector 将与 前一个单元状态(cell state) (c^{langle t-1 angle}) 元素相乘。
因此,如果 (Gamma_f^{langle t angle}) 的一个值是 0 (或 (approx) 0) ,则意味着 LSTM 应该删除这条信息 ( the singular subject) 在相应的(c^{langle t-1 angle})组成部分中。如果其中有值为 1,那么 LSTM 将保留信息。
- Update gate
一旦我们忘记过去所讨论的主语是单数,我们需要找到一种方法来更新它,以反映新的主语现在是复数。这里是更新门(update gate)的公式
与遗忘门相似,(Gamma_u^{langle t angle}) 向量的值在0与 1之间。为了计算 (c^{langle t angle}),它会与 ( ilde{c}^{langle t angle}) 元素相乘。
- Updating the cell
为了更新主语,我们需要创建一个新的向量,我们可以将其添加到之前的单元状态中(cell state)。公式为:
最后,新的单元状态(cell state)是:
- Output gate
为了决定我们将使用哪种输出,使用下列公式:
2.1 LSTM cell
Instructions:
-
把 (a^{langle t-1 angle}) 和 (x^{langle t angle}) 连接起来变成一个矩阵: (concat = egin{bmatrix} a^{langle t-1 angle} \ x^{langle t angle} end{bmatrix}).
-
计算公式 1-6,你可以使用
sigmoid()
(provided) 和np.tanh()
. -
计算 prediction (y^{langle t angle}). 你可以使用
softmax()
(provided).
# GRADED FUNCTION: lstm_cell_forward
def lstm_cell_forward(xt, a_prev, c_prev, parameters):
"""
Implement a single forward step of the LSTM-cell as described in Figure (4)
Arguments:
xt -- your input data at timestep "t", numpy array of shape (n_x, m).
a_prev -- Hidden state at timestep "t-1", numpy array of shape (n_a, m)
c_prev -- Memory state at timestep "t-1", numpy array of shape (n_a, m)
parameters -- python dictionary containing:
Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
bf -- Bias of the forget gate, numpy array of shape (n_a, 1)
Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
bi -- Bias of the update gate, numpy array of shape (n_a, 1)
Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x)
bc -- Bias of the first "tanh", numpy array of shape (n_a, 1)
Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x)
bo -- Bias of the output gate, numpy array of shape (n_a, 1)
Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
Returns:
a_next -- next hidden state, of shape (n_a, m)
c_next -- next memory state, of shape (n_a, m)
yt_pred -- prediction at timestep "t", numpy array of shape (n_y, m)
cache -- tuple of values needed for the backward pass, contains (a_next, c_next, a_prev, c_prev, xt, parameters)
Note: ft/it/ot stand for the forget/update/output gates, cct stands for the candidate value (c tilde),
c stands for the memory value
"""
# Retrieve parameters from "parameters"
Wf = parameters["Wf"]
bf = parameters["bf"]
Wi = parameters["Wi"]
bi = parameters["bi"]
Wc = parameters["Wc"]
bc = parameters["bc"]
Wo = parameters["Wo"]
bo = parameters["bo"]
Wy = parameters["Wy"]
by = parameters["by"]
# Retrieve dimensions from shapes of xt and Wy
n_x, m = xt.shape
n_y, n_a = Wy.shape
### START CODE HERE ###
# Concatenate a_prev and xt (≈3 lines)
concat = np.zeros((n_a+n_x, m))
concat[: n_a, :] = a_prev
concat[n_a :, :] = xt
# Compute values for ft, it, cct, c_next, ot, a_next using the formulas given figure (4) (≈6 lines)
ft = sigmoid(np.dot(Wf, concat) + bf)
it = sigmoid(np.dot(Wi, concat) + bi)
cct = np.tanh(np.dot(Wc, concat) + bc)
c_next = ft * c_prev + it * cct
ot = sigmoid(np.dot(Wo, concat) + bo)
a_next = ot * np.tanh(c_next)
c_next = ft * c_prev + it * cct
ot = sigmoid(np.dot(Wo,concat)+bo)
a_next = ot * np.tanh(c_next)
# Compute prediction of the LSTM cell (≈1 line)
yt_pred = softmax(np.dot(Wy, a_next) + by)
### END CODE HERE ###
# store values needed for backward propagation in cache
cache = (a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters)
return a_next, c_next, yt_pred, cache
测试
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
c_prev = np.random.randn(5,10)
Wf = np.random.randn(5, 5+3)
bf = np.random.randn(5,1)
Wi = np.random.randn(5, 5+3)
bi = np.random.randn(5,1)
Wo = np.random.randn(5, 5+3)
bo = np.random.randn(5,1)
Wc = np.random.randn(5, 5+3)
bc = np.random.randn(5,1)
Wy = np.random.randn(2,5)
by = np.random.randn(2,1)
parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by}
a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters)
print("a_next[4] = ", a_next[4])
print("a_next.shape = ", c_next.shape)
print("c_next[2] = ", c_next[2])
print("c_next.shape = ", c_next.shape)
print("yt[1] =", yt[1])
print("yt.shape = ", yt.shape)
print("cache[1][3] =", cache[1][3])
print("len(cache) = ", len(cache))
a_next[4] = [-0.66408471 0.0036921 0.02088357 0.22834167 -0.85575339 0.00138482
0.76566531 0.34631421 -0.00215674 0.43827275]
a_next.shape = (5, 10)
c_next[2] = [ 0.63267805 1.00570849 0.35504474 0.20690913 -1.64566718 0.11832942
0.76449811 -0.0981561 -0.74348425 -0.26810932]
c_next.shape = (5, 10)
yt[1] = [0.79913913 0.15986619 0.22412122 0.15606108 0.97057211 0.31146381
0.00943007 0.12666353 0.39380172 0.07828381]
yt.shape = (2, 10)
cache[1][3] = [-0.16263996 1.03729328 0.72938082 -0.54101719 0.02752074 -0.30821874
0.07651101 -1.03752894 1.41219977 -0.37647422]
len(cache) = 10
2.2 Forward pass for LSTM
我们已经实现了LSTM单元的一个时间步的前向传播,现在我们要对LSTM网络进行前向传播进行计算
Figure 4: LSTM over multiple time-steps.
Exercise: Implement lstm_forward()
to run an LSTM over (T_x) time-steps.
Note: (c^{langle 0 angle}) is initialized with zeros.
# GRADED FUNCTION: lstm_forward
def lstm_forward(x, a0, parameters):
"""
Implement the forward propagation of the recurrent neural network using an LSTM-cell described in Figure (3).
Arguments:
x -- Input data for every time-step, of shape (n_x, m, T_x).
a0 -- Initial hidden state, of shape (n_a, m)
parameters -- python dictionary containing:
Wf -- Weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
bf -- Bias of the forget gate, numpy array of shape (n_a, 1)
Wi -- Weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
bi -- Bias of the update gate, numpy array of shape (n_a, 1)
Wc -- Weight matrix of the first "tanh", numpy array of shape (n_a, n_a + n_x)
bc -- Bias of the first "tanh", numpy array of shape (n_a, 1)
Wo -- Weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x)
bo -- Bias of the output gate, numpy array of shape (n_a, 1)
Wy -- Weight matrix relating the hidden-state to the output, numpy array of shape (n_y, n_a)
by -- Bias relating the hidden-state to the output, numpy array of shape (n_y, 1)
Returns:
a -- Hidden states for every time-step, numpy array of shape (n_a, m, T_x)
y -- Predictions for every time-step, numpy array of shape (n_y, m, T_x)
caches -- tuple of values needed for the backward pass, contains (list of all the caches, x)
"""
# Initialize "caches", which will track the list of all the caches
caches = []
### START CODE HERE ###
# Retrieve dimensions from shapes of x and parameters['Wy'] (≈2 lines)
n_x, m, T_x = x.shape
n_y, n_a = parameters['Wy'].shape
# initialize "a", "c" and "y" with zeros (≈3 lines)
a = np.zeros((n_a, m, T_x))
c = np.zeros((n_a, m, T_x))
y = np.zeros((n_y, m, T_x))
# Initialize a_next and c_next (≈2 lines)
a_next = a0
c_next = np.zeros((n_a, 1))
# loop over all time-steps
for t in range(T_x):
# Update next hidden state, next memory state, compute the prediction, get the cache (≈1 line)
# a_next, c_next, yt_pred, cache
a_next, c_next, yt, cache = lstm_cell_forward(x[:,:,t], a_next, c_next, parameters)
# Save the value of the new "next" hidden state in a (≈1 line)
a[:,:,t] = a_next
# Save the value of the prediction in y (≈1 line)
y[:,:,t] = yt
# Save the value of the next cell state (≈1 line)
c[:,:,t] = c_next
# Append the cache into caches (≈1 line)
caches.append(cache)
### END CODE HERE ###
# store values needed for backward propagation in cache
caches = (caches, x)
return a, y, c, caches
测试:
np.random.seed(1)
x = np.random.randn(3,10,7)
a0 = np.random.randn(5,10)
Wf = np.random.randn(5, 5+3)
bf = np.random.randn(5,1)
Wi = np.random.randn(5, 5+3)
bi = np.random.randn(5,1)
Wo = np.random.randn(5, 5+3)
bo = np.random.randn(5,1)
Wc = np.random.randn(5, 5+3)
bc = np.random.randn(5,1)
Wy = np.random.randn(2,5)
by = np.random.randn(2,1)
parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by}
a, y, c, caches = lstm_forward(x, a0, parameters)
print("a[4][3][6] = ", a[4][3][6])
print("a.shape = ", a.shape)
print("y[1][4][3] =", y[1][4][3])
print("y.shape = ", y.shape)
print("caches[1][1[1]] =", caches[1][1][1])
print("c[1][2][1]", c[1][2][1])
print("len(caches) = ", len(caches))
a[4][3][6] = 0.17211776753291672
a.shape = (5, 10, 7)
y[1][4][3] = 0.9508734618501101
y.shape = (2, 10, 7)
caches[1][1[1]] = [ 0.82797464 0.23009474 0.76201118 -0.22232814 -0.20075807 0.18656139
0.41005165]
c[1][2][1] -0.8555449167181981
len(caches) = 2
3. Backpropagation in recurrent neural networks
在循环神经网络中,我们可以计算与成本相关的导数,以便更新参数。
3.1 基本的RNN网络的反向传播
We will start by computing the backward pass for the basic RNN-cell.
Figure 5: RNN-cell's backward pass. 就像在fully-connected neural network, the cost function (J) 的导数通过遵循链式法则从RNN进行反向传播。 链式法则也用于计算 ((frac{partial J}{partial W_{ax}},frac{partial J}{partial W_{aa}},frac{partial J}{partial b})) 来更新 parameters ((W_{ax}, W_{aa}, b_a)).
Figure 7: This implementation of rnn_cell_backward does not include the output dense layer and softmax which are included in rnn_cell_forward.
(da_{next}) is (frac{partial{J}}{partial a^{langle t angle}}) and includes loss from previous stages and current stage output logic. The addition shown in green will be part of your implementation of rnn_backward.
Deriving the one step backward functions:
单步反向传播的推导:为了计算rnn_cell_backward
,我们需要计算下面的公式:
( anh) 的导数是 (1- anh(x)^2). 证明. 注意: ( ext{sech}(x)^2 = 1 - anh(x)^2)
相似于,对于 (frac{ partial a^{langle t angle} } {partial W_{ax}}, frac{ partial a^{langle t angle} } {partial W_{aa}}, frac{ partial a^{langle t angle} } {partial b}), ( anh(u)) 的导数是 ((1- anh(u)^2)du).
dtanh = da_next * (1 - np.square(np.tanh(np.dot(Wax, xt) + np.dot(Waa, a_prev) + ba)))
Equations
To compute the rnn_cell_backward you can utilize the following equations. It is a good exercise to derive them by hand. Here, (*) denotes element-wise multiplication while the absence of a symbol indicates matrix multiplication.
def rnn_cell_backward(da_next, cache):
"""
Implements the backward pass for the RNN-cell (single time-step).
Arguments:
da_next -- Gradient of loss with respect to next hidden state
cache -- python dictionary containing useful values (output of rnn_cell_forward())
Returns:
gradients -- python dictionary containing:
dx -- Gradients of input data, of shape (n_x, m)
da_prev -- Gradients of previous hidden state, of shape (n_a, m)
dWax -- Gradients of input-to-hidden weights, of shape (n_a, n_x)
dWaa -- Gradients of hidden-to-hidden weights, of shape (n_a, n_a)
dba -- Gradients of bias vector, of shape (n_a, 1)
"""
# Retrieve values from cache
(a_next, a_prev, xt, parameters) = cache
# Retrieve values from parameters
Wax = parameters["Wax"]
Waa = parameters["Waa"]
Wya = parameters["Wya"]
ba = parameters["ba"]
by = parameters["by"]
### START CODE HERE ###
# compute the gradient of tanh with respect to a_next (≈1 line)
dtanh = da_next * (1 - np.square(np.tanh(np.dot(Wax, xt) + np.dot(Waa, a_prev) + ba)))
# compute the gradient of the loss with respect to Wax (≈2 lines)
dxt = np.dot(Wax.T, dtanh)
dWax = np.dot(dtanh, xt.T)
# compute the gradient with respect to Waa (≈2 lines)
da_prev = np.dot(Waa.T, dtanh)
dWaa = np.dot(dtanh, a_prev.T)
# compute the gradient with respect to b (≈1 line)
dba = np.sum(dtanh, axis = 1, keepdims = True)
### END CODE HERE ###
# Store the gradients in a python dictionary
gradients = {"dxt": dxt, "da_prev": da_prev, "dWax": dWax, "dWaa": dWaa, "dba": dba}
return gradients
测试:
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
Wax = np.random.randn(5,3)
Waa = np.random.randn(5,5)
Wya = np.random.randn(2,5)
b = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}
a_next, yt, cache = rnn_cell_forward(xt, a_prev, parameters)
da_next = np.random.randn(5,10)
gradients = rnn_cell_backward(da_next, cache)
print("gradients["dxt"][1][2] =", gradients["dxt"][1][2])
print("gradients["dxt"].shape =", gradients["dxt"].shape)
print("gradients["da_prev"][2][3] =", gradients["da_prev"][2][3])
print("gradients["da_prev"].shape =", gradients["da_prev"].shape)
print("gradients["dWax"][3][1] =", gradients["dWax"][3][1])
print("gradients["dWax"].shape =", gradients["dWax"].shape)
print("gradients["dWaa"][1][2] =", gradients["dWaa"][1][2])
print("gradients["dWaa"].shape =", gradients["dWaa"].shape)
print("gradients["dba"][4] =", gradients["dba"][4])
print("gradients["dba"].shape =", gradients["dba"].shape)
gradients["dxt"][1][2] = -0.4605641030588796
gradients["dxt"].shape = (3, 10)
gradients["da_prev"][2][3] = 0.08429686538067718
gradients["da_prev"].shape = (5, 10)
gradients["dWax"][3][1] = 0.3930818739219304
gradients["dWax"].shape = (5, 3)
gradients["dWaa"][1][2] = -0.2848395578696067
gradients["dWaa"].shape = (5, 5)
gradients["dba"][4] = [0.80517166]
gradients["dba"].shape = (5, 1)
Backward pass through the RNN
计算 每个time-step关于 (a^{langle t angle}) 代价的梯度 是有用的,因为它帮助梯度 向前一个 RNN-cell 反向传播。从结尾开始,迭代所有time steps,每一步,实现 (db_a), (dW_{aa}), (dW_{ax}), 并且存储 (dx).
Instructions:
实现 rnn_backward
函数. 首先,初始化 回归变量为0,然后,循环每个time-steps,通过调用 rnn_cell_backward
,更新其他变量.
def rnn_backward(da, caches):
"""
Implement the backward pass for a RNN over an entire sequence of input data.
Arguments:
da -- Upstream gradients of all hidden states, of shape (n_a, m, T_x)
caches -- tuple containing information from the forward pass (rnn_forward)
Returns:
gradients -- python dictionary containing:
dx -- Gradient w.r.t. the input data, numpy-array of shape (n_x, m, T_x)
da0 -- Gradient w.r.t the initial hidden state, numpy-array of shape (n_a, m)
dWax -- Gradient w.r.t the input's weight matrix, numpy-array of shape (n_a, n_x)
dWaa -- Gradient w.r.t the hidden state's weight matrix, numpy-arrayof shape (n_a, n_a)
dba -- Gradient w.r.t the bias, of shape (n_a, 1)
"""
### START CODE HERE ###
# Retrieve values from the first cache (t=1) of caches (≈2 lines)
(caches, x) = caches
(a1, a0, x1, parameters) = caches[0]
# Retrieve dimensions from da's and x1's shapes (≈2 lines)
n_a, m, T_x = da.shape
n_x, m = x1.shape
# initialize the gradients with the right sizes (≈6 lines)
dx = np.zeros((n_x, m, T_x))
dWax = np.zeros((n_a, n_x))
dWaa = np.zeros((n_a, n_a))
dba = np.zeros((n_a, 1))
da0 = np.zeros((n_a, m))
da_prevt = np.zeros((n_a, 1))
# Loop through all the time steps
for t in reversed(range(T_x)):
# Compute gradients at time step t. Choose wisely the "da_next" and the "cache" to use in the backward propagation step. (≈1 line)
gradients = rnn_cell_backward(da[:,:,t] + da_prevt, caches[t])
# Retrieve derivatives from gradients (≈ 1 line)
dxt, da_prevt, dWaxt, dWaat, dbat = gradients['dxt'], gradients['da_prev'], gradients['dWax'], gradients['dWaa'], gradients['dba']
# Increment global derivatives w.r.t parameters by adding their derivative at time-step t (≈4 lines)
dx[:, :, t] = dxt
dWax += dWaxt
dWaa += dWaat
dba += dbat
# Set da0 to the gradient of a which has been backpropagated through all time-steps (≈1 line)
da0 = da_prevt
### END CODE HERE ###
# Store the gradients in a python dictionary
gradients = {"dx": dx, "da0": da0, "dWax": dWax, "dWaa": dWaa,"dba": dba}
return gradients
测试:
np.random.seed(1)
x = np.random.randn(3,10,4)
a0 = np.random.randn(5,10)
Wax = np.random.randn(5,3)
Waa = np.random.randn(5,5)
Wya = np.random.randn(2,5)
ba = np.random.randn(5,1)
by = np.random.randn(2,1)
parameters = {"Wax": Wax, "Waa": Waa, "Wya": Wya, "ba": ba, "by": by}
a, y, caches = rnn_forward(x, a0, parameters)
da = np.random.randn(5, 10, 4)
gradients = rnn_backward(da, caches)
print("gradients["dx"][1][2] =", gradients["dx"][1][2])
print("gradients["dx"].shape =", gradients["dx"].shape)
print("gradients["da0"][2][3] =", gradients["da0"][2][3])
print("gradients["da0"].shape =", gradients["da0"].shape)
print("gradients["dWax"][3][1] =", gradients["dWax"][3][1])
print("gradients["dWax"].shape =", gradients["dWax"].shape)
print("gradients["dWaa"][1][2] =", gradients["dWaa"][1][2])
print("gradients["dWaa"].shape =", gradients["dWaa"].shape)
print("gradients["dba"][4] =", gradients["dba"][4])
print("gradients["dba"].shape =", gradients["dba"].shape)
gradients["dx"][1][2] = [-2.07101689 -0.59255627 0.02466855 0.01483317]
gradients["dx"].shape = (3, 10, 4)
gradients["da0"][2][3] = -0.31494237512664996
gradients["da0"].shape = (5, 10)
gradients["dWax"][3][1] = 11.264104496527777
gradients["dWax"].shape = (5, 3)
gradients["dWaa"][1][2] = 2.3033331265798935
gradients["dWaa"].shape = (5, 5)
gradients["dba"][4] = [-0.74747722]
gradients["dba"].shape = (5, 1)
3.2 LSTM backward pass
3.21 One step backward
3.22 gate derivatives
3.23 parameter derivatives
(dW_f = dGamma_f^{langle t angle} egin{bmatrix} a_{prev} \ x_tend{bmatrix}^T ag{11})
(dW_u = dGamma_u^{langle t angle} egin{bmatrix} a_{prev} \ x_tend{bmatrix}^T ag{12})
(dW_c = dpwidetilde c^{langle t angle} egin{bmatrix} a_{prev} \ x_tend{bmatrix}^T ag{13})
(dW_o = dGamma_o^{langle t angle} egin{bmatrix} a_{prev} \ x_tend{bmatrix}^T ag{14})
为了计算 (db_f, db_u, db_c, db_o) 你需要在 (dGamma_f^{langle t
angle}, dGamma_u^{langle t
angle}, dp ilde c^{langle t
angle}, dGamma_o^{langle t
angle}) 上在horizontal axis(axis=1) 进行求和。需要使用 keep_dims = True
选项.
(displaystyle db_f = sum_{batch}dGamma_f^{langle t angle} ag{15})
(displaystyle db_u = sum_{batch}dGamma_u^{langle t angle} ag{16})
(displaystyle db_c = sum_{batch}dGamma_c^{langle t angle} ag{17})
(displaystyle db_o = sum_{batch}dGamma_o^{langle t angle} ag{18})
最后,需要计算先前隐藏状态(the previous hidden state), 先前记忆单元(previous memory state), 和 输入(input) 的导数
这里,方程19的权重是第一个n_a
,(比如: (W_f = W_f[:,:n_a]) 等)
方程21的权重从n_a
到结尾,(比如: (W_f = W_f[:,n_a:]) 等)
Exercise: Implement lstm_cell_backward
通过实现公式 (7-18).
def lstm_cell_backward(da_next, dc_next, cache):
"""
Implement the backward pass for the LSTM-cell (single time-step).
Arguments:
da_next -- Gradients of next hidden state, of shape (n_a, m)
dc_next -- Gradients of next cell state, of shape (n_a, m)
cache -- cache storing information from the forward pass
Returns:
gradients -- python dictionary containing:
dxt -- Gradient of input data at time-step t, of shape (n_x, m)
da_prev -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m)
dc_prev -- Gradient w.r.t. the previous memory state, of shape (n_a, m, T_x)
dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
dWi -- Gradient w.r.t. the weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x)
dWo -- Gradient w.r.t. the weight matrix of the output gate, numpy array of shape (n_a, n_a + n_x)
dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1)
dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1)
dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1)
dbo -- Gradient w.r.t. biases of the output gate, of shape (n_a, 1)
"""
# Retrieve information from "cache"
(a_next, c_next, a_prev, c_prev, ft, it, cct, ot, xt, parameters) = cache
### START CODE HERE ###
# Retrieve dimensions from xt's and a_next's shape (≈2 lines)
n_x, m = xt.shape
n_a, m = a_next.shape
# Compute gates related derivatives, you can find their values can be found by looking carefully at equations (7) to (10) (≈4 lines)
dot = da_next * np.tanh(c_next) * ot * (1-ot)
dcct = (dc_next * it + ot * (1 - np.square(np.tanh(c_next))) * it * da_next) * (1 - np.square(cct))
dit = (dc_next * cct + ot * (1 - np.square(np.tanh(c_next))) * cct * da_next) * it * (1 - it)
dft = (dc_next * c_prev + ot * (1 - np.square(np.tanh(c_next))) * c_prev * da_next) * ft * (1 - ft)
# Compute parameters related derivatives. Use equations (11)-(14) (≈8 lines)
concat = np.concatenate((a_prev, xt), axis=0).T
dWf = np.dot(dft, concat)
dWi = np.dot(dit, concat)
dWc = np.dot(dcct, concat)
dWo = np.dot(dot, concat)
dbf = np.sum(dft, axis=1, keepdims=True)
dbi = np.sum(dit, axis=1, keepdims=True)
dbc = np.sum(dcct, axis=1, keepdims=True)
dbo = np.sum(dot, axis=1, keepdims=True)
# Compute derivatives w.r.t previous hidden state, previous memory state and input. Use equations (15)-(17). (≈3 lines)
da_prev = np.dot(parameters['Wf'][:,:n_a].T, dft) + np.dot(parameters["Wi"][:, :n_a].T, dit) + np.dot(parameters['Wc'][:,:n_a].T, dcct) + np.dot(parameters['Wo'][:,:n_a].T, dot)
dc_prev = dc_next * ft + ot * (1-np.square(np.tanh(c_next))) * ft * da_next
dxt = np.dot(parameters['Wf'][:, n_a:].T, dft) + np.dot(parameters["Wi"][:, n_a:].T, dit)+ np.dot(parameters['Wc'][:,n_a:].T,dcct) + np.dot(parameters['Wo'][:,n_a:].T, dot)
### END CODE HERE ###
# Save gradients in dictionary
gradients = {"dxt": dxt, "da_prev": da_prev, "dc_prev": dc_prev, "dWf": dWf,"dbf": dbf, "dWi": dWi,"dbi": dbi,
"dWc": dWc,"dbc": dbc, "dWo": dWo,"dbo": dbo}
return gradients
测试:
np.random.seed(1)
xt = np.random.randn(3,10)
a_prev = np.random.randn(5,10)
c_prev = np.random.randn(5,10)
Wf = np.random.randn(5, 5+3)
bf = np.random.randn(5,1)
Wi = np.random.randn(5, 5+3)
bi = np.random.randn(5,1)
Wo = np.random.randn(5, 5+3)
bo = np.random.randn(5,1)
Wc = np.random.randn(5, 5+3)
bc = np.random.randn(5,1)
Wy = np.random.randn(2,5)
by = np.random.randn(2,1)
parameters = {"Wf": Wf, "Wi": Wi, "Wo": Wo, "Wc": Wc, "Wy": Wy, "bf": bf, "bi": bi, "bo": bo, "bc": bc, "by": by}
a_next, c_next, yt, cache = lstm_cell_forward(xt, a_prev, c_prev, parameters)
da_next = np.random.randn(5,10)
dc_next = np.random.randn(5,10)
gradients = lstm_cell_backward(da_next, dc_next, cache)
print("gradients["dxt"][1][2] =", gradients["dxt"][1][2])
print("gradients["dxt"].shape =", gradients["dxt"].shape)
print("gradients["da_prev"][2][3] =", gradients["da_prev"][2][3])
print("gradients["da_prev"].shape =", gradients["da_prev"].shape)
print("gradients["dc_prev"][2][3] =", gradients["dc_prev"][2][3])
print("gradients["dc_prev"].shape =", gradients["dc_prev"].shape)
print("gradients["dWf"][3][1] =", gradients["dWf"][3][1])
print("gradients["dWf"].shape =", gradients["dWf"].shape)
print("gradients["dWi"][1][2] =", gradients["dWi"][1][2])
print("gradients["dWi"].shape =", gradients["dWi"].shape)
print("gradients["dWc"][3][1] =", gradients["dWc"][3][1])
print("gradients["dWc"].shape =", gradients["dWc"].shape)
print("gradients["dWo"][1][2] =", gradients["dWo"][1][2])
print("gradients["dWo"].shape =", gradients["dWo"].shape)
print("gradients["dbf"][4] =", gradients["dbf"][4])
print("gradients["dbf"].shape =", gradients["dbf"].shape)
print("gradients["dbi"][4] =", gradients["dbi"][4])
print("gradients["dbi"].shape =", gradients["dbi"].shape)
print("gradients["dbc"][4] =", gradients["dbc"][4])
print("gradients["dbc"].shape =", gradients["dbc"].shape)
print("gradients["dbo"][4] =", gradients["dbo"][4])
print("gradients["dbo"].shape =", gradients["dbo"].shape)
gradients["dxt"][1][2] = 3.2305591151091875
gradients["dxt"].shape = (3, 10)
gradients["da_prev"][2][3] = -0.06396214197109236
gradients["da_prev"].shape = (5, 10)
gradients["dc_prev"][2][3] = 0.7975220387970015
gradients["dc_prev"].shape = (5, 10)
gradients["dWf"][3][1] = -0.1479548381644968
gradients["dWf"].shape = (5, 8)
gradients["dWi"][1][2] = 1.0574980552259903
gradients["dWi"].shape = (5, 8)
gradients["dWc"][3][1] = 2.3045621636876668
gradients["dWc"].shape = (5, 8)
gradients["dWo"][1][2] = 0.3313115952892109
gradients["dWo"].shape = (5, 8)
gradients["dbf"][4] = [0.18864637]
gradients["dbf"].shape = (5, 1)
gradients["dbi"][4] = [-0.40142491]
gradients["dbi"].shape = (5, 1)
gradients["dbc"][4] = [0.25587763]
gradients["dbc"].shape = (5, 1)
gradients["dbo"][4] = [0.13893342]
gradients["dbo"].shape = (5, 1)
3.3 Backward pass through the LSTM RNN
首先,创建与返回变量相同维度的变量。然后将遍历从结束到开始的所有时间步,并调用在每次迭代时为LSTM实现的单步反向传播功能。然后我们将通过单独求和来更新参数,最后返回一个带有新梯度的字典。
Instructions: 实现 lstm_backward
函数。从 (T_x) 开始循环并往回走. 每个step调用 lstm_cell_backward
and 更新旧的梯度通过加上新的梯度。Note that dxt
is not updated but is stored.
def lstm_backward(da, caches):
"""
Implement the backward pass for the RNN with LSTM-cell (over a whole sequence).
Arguments:
da -- Gradients w.r.t the hidden states, numpy-array of shape (n_a, m, T_x)
caches -- cache storing information from the forward pass (lstm_forward)
Returns:
gradients -- python dictionary containing:
dx -- Gradient of inputs, of shape (n_x, m, T_x)
da0 -- Gradient w.r.t. the previous hidden state, numpy array of shape (n_a, m)
dWf -- Gradient w.r.t. the weight matrix of the forget gate, numpy array of shape (n_a, n_a + n_x)
dWi -- Gradient w.r.t. the weight matrix of the update gate, numpy array of shape (n_a, n_a + n_x)
dWc -- Gradient w.r.t. the weight matrix of the memory gate, numpy array of shape (n_a, n_a + n_x)
dWo -- Gradient w.r.t. the weight matrix of the save gate, numpy array of shape (n_a, n_a + n_x)
dbf -- Gradient w.r.t. biases of the forget gate, of shape (n_a, 1)
dbi -- Gradient w.r.t. biases of the update gate, of shape (n_a, 1)
dbc -- Gradient w.r.t. biases of the memory gate, of shape (n_a, 1)
dbo -- Gradient w.r.t. biases of the save gate, of shape (n_a, 1)
"""
# Retrieve values from the first cache (t=1) of caches.
(caches, x) = caches
(a1, c1, a0, c0, f1, i1, cc1, o1, x1, parameters) = caches[0]
### START CODE HERE ###
# Retrieve dimensions from da's and x1's shapes (≈2 lines)
n_a, m, T_x = da.shape
n_x, m = x1.shape
# initialize the gradients with the right sizes (≈12 lines)
dx = np.zeros([n_x, m, T_x])
da0 = np.zeros([n_a, m])
da_prevt = np.zeros([n_a, m])
dc_prevt = np.zeros([n_a, m])
dWf = np.zeros([n_a, n_a + n_x])
dWi = np.zeros([n_a, n_a + n_x])
dWc = np.zeros([n_a, n_a + n_x])
dWo = np.zeros([n_a, n_a + n_x])
dbf = np.zeros([n_a, 1])
dbi = np.zeros([n_a, 1])
dbc = np.zeros([n_a, 1])
dbo = np.zeros([n_a, 1])
# loop back over the whole sequence
for t in reversed(range(T_x)):
# Compute all gradients using lstm_cell_backward
gradients = lstm_cell_backward(da[:, :, t] + da_prevt, dc_prevt, caches[t])
# Store or add the gradient to the parameters' previous step's gradient
da_prevt = gradients['da_prev']
dc_prevt = gradients['dc_prev']
dx[:,:,t] = gradients['dxt']
dWf = dWf + gradients['dWf']
dWi = dWi + gradients['dWi']
dWc = dWc + gradients['dWc']
dWo = dWo + gradients['dWo']
dbf = dbf + gradients['dbf']
dbi = dbi + gradients['dbi']
dbc = dbc + gradients['dbc']
dbo = dbo + gradients['dbo']
# Set the first activation's gradient to the backpropagated gradient da_prev.
da0 = gradients['da_prev']
### END CODE HERE ###
# Store the gradients in a python dictionary
gradients = {"dx": dx, "da0": da0, "dWf": dWf,"dbf": dbf, "dWi": dWi,"dbi": dbi,
"dWc": dWc,"dbc": dbc, "dWo": dWo,"dbo": dbo}
return gradients
测试:
np.random.seed(1)
x_tmp = np.random.randn(3,10,7)
a0_tmp = np.random.randn(5,10)
parameters_tmp = {}
parameters_tmp['Wf'] = np.random.randn(5, 5+3)
parameters_tmp['bf'] = np.random.randn(5,1)
parameters_tmp['Wi'] = np.random.randn(5, 5+3)
parameters_tmp['bi'] = np.random.randn(5,1)
parameters_tmp['Wo'] = np.random.randn(5, 5+3)
parameters_tmp['bo'] = np.random.randn(5,1)
parameters_tmp['Wc'] = np.random.randn(5, 5+3)
parameters_tmp['bc'] = np.random.randn(5,1)
parameters_tmp['Wy'] = np.zeros((2,5)) # unused, but needed for lstm_forward
parameters_tmp['by'] = np.zeros((2,1)) # unused, but needed for lstm_forward
a_tmp, y_tmp, c_tmp, caches_tmp = lstm_forward(x_tmp, a0_tmp, parameters_tmp)
da_tmp = np.random.randn(5, 10, 4)
gradients_tmp = lstm_backward(da_tmp, caches_tmp)
print("gradients["dx"][1][2] =", gradients_tmp["dx"][1][2])
print("gradients["dx"].shape =", gradients_tmp["dx"].shape)
print("gradients["da0"][2][3] =", gradients_tmp["da0"][2][3])
print("gradients["da0"].shape =", gradients_tmp["da0"].shape)
print("gradients["dWf"][3][1] =", gradients_tmp["dWf"][3][1])
print("gradients["dWf"].shape =", gradients_tmp["dWf"].shape)
print("gradients["dWi"][1][2] =", gradients_tmp["dWi"][1][2])
print("gradients["dWi"].shape =", gradients_tmp["dWi"].shape)
print("gradients["dWc"][3][1] =", gradients_tmp["dWc"][3][1])
print("gradients["dWc"].shape =", gradients_tmp["dWc"].shape)
print("gradients["dWo"][1][2] =", gradients_tmp["dWo"][1][2])
print("gradients["dWo"].shape =", gradients_tmp["dWo"].shape)
print("gradients["dbf"][4] =", gradients_tmp["dbf"][4])
print("gradients["dbf"].shape =", gradients_tmp["dbf"].shape)
print("gradients["dbi"][4] =", gradients_tmp["dbi"][4])
print("gradients["dbi"].shape =", gradients_tmp["dbi"].shape)
print("gradients["dbc"][4] =", gradients_tmp["dbc"][4])
print("gradients["dbc"].shape =", gradients_tmp["dbc"].shape)
print("gradients["dbo"][4] =", gradients_tmp["dbo"][4])
print("gradients["dbo"].shape =", gradients_tmp["dbo"].shape)
gradients["dx"][1][2] = [ 0.00218254 0.28205375 -0.48292508 -0.43281115]
gradients["dx"].shape = (3, 10, 4)
gradients["da0"][2][3] = 0.312770310257
gradients["da0"].shape = (5, 10)
gradients["dWf"][3][1] = -0.0809802310938
gradients["dWf"].shape = (5, 8)
gradients["dWi"][1][2] = 0.40512433093
gradients["dWi"].shape = (5, 8)
gradients["dWc"][3][1] = -0.0793746735512
gradients["dWc"].shape = (5, 8)
gradients["dWo"][1][2] = 0.038948775763
gradients["dWo"].shape = (5, 8)
gradients["dbf"][4] = [-0.15745657]
gradients["dbf"].shape = (5, 1)
gradients["dbi"][4] = [-0.50848333]
gradients["dbi"].shape = (5, 1)
gradients["dbc"][4] = [-0.42510818]
gradients["dbc"].shape = (5, 1)
gradients["dbo"][4] = [-0.17958196]
gradients["dbo"].shape = (5, 1)