Problem Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases.
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
Sample Input
4
6 3
6 -1 2 -6 5 -5
6 4
6 -1 2 -6 5 -5
6 3
-1 2 -6 5 -5 6
6 6
-1 -1 -1 -1 -1 -1
Sample Output
7 1 3
7 1 3
7 6 2
-1 1 1
1 #include <vector> 2 #include <cstdio> 3 #include <queue> 4 #include <algorithm> 5 #include <climits> 6 using namespace std; 7 8 int T; 9 int N, K; 10 vector<int> v; 11 deque<int> q; 12 13 void solve() { 14 int sum = INT_MIN, start = 0, end = 0; 15 for (int i = 1; i <= N + K; ++i) { 16 while (!q.empty() && v[q.back()] > v[i]) q.pop_back(); 17 q.push_back(i - 1); 18 while (i - q.front() > K) q.pop_front(); 19 if (sum < v[i] - v[q.front()]) { 20 sum = v[i] - v[q.front()]; 21 start = q.front() + 1; 22 end = i; 23 } 24 } 25 printf("%d %d %d ", sum, start, end > N ? end - N : end); 26 } 27 28 int main() { 29 scanf("%d", &T); 30 while (T--) { 31 scanf("%d %d", &N, &K); 32 v.resize(N + K + 1, 0); 33 for (int i = 1; i <= N; ++i) { 34 scanf("%d", &v[i]); 35 v[i] += v[i-1]; 36 } 37 for (int i = N + 1; i <= N + K; ++i) { 38 v[i] = v[N] + v[i-N]; 39 } 40 q.clear(); 41 solve(); 42 } 43 return 0; 44 }