zoukankan      html  css  js  c++  java
  • 正则化以及优化

    权重的初始化:


    1.如果激活函数是:Relu:   W(n[L],n[L-1])=np.random.rand(n[L],n[L-1]) *np.sqrt(2/n[L-1]

    2.如果激活函数是:tanh:   W(n[L],n[L-1])=np.random.rand(n[L],n[L-1]) *np.sqrt(1/n[L-1]

     1 def initialize_parameters_he(layers_dims):
     2     """
     3     Arguments:
     4     layer_dims -- python array (list) containing the size of each layer.
     5     
     6     Returns:
     7     parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
     8                     W1 -- weight matrix of shape (layers_dims[1], layers_dims[0])
     9                     b1 -- bias vector of shape (layers_dims[1], 1)
    10                     ...
    11                     WL -- weight matrix of shape (layers_dims[L], layers_dims[L-1])
    12                     bL -- bias vector of shape (layers_dims[L], 1)
    13     """
    14     
    15     np.random.seed(3)
    16     parameters = {}
    17     L = len(layers_dims) - 1 # integer representing the number of layers
    18      
    19     for l in range(1, L + 1):
    20         ### START CODE HERE ### (≈ 2 lines of code)
    21         parameters['W' + str(l)] = np.random.randn(layers_dims[l],layers_dims[l-1])*np.sqrt(1/layers_dims[l-1])
    22         parameters['b' + str(l)] = np.zeros((layers_dims[l],1))
    23         ### END CODE HERE ###
    24         
    25     return parameters

    正则化:


    L2 Regularization : The standard way to avoid overfitting 

     1. Basic function:

      1 import numpy as np
      2 import matplotlib.pyplot as plt
      3 import h5py
      4 import sklearn
      5 import sklearn.datasets
      6 import sklearn.linear_model
      7 import scipy.io
      8 
      9 def sigmoid(x):
     10     """
     11     Compute the sigmoid of x
     12 
     13     Arguments:
     14     x -- A scalar or numpy array of any size.
     15 
     16     Return:
     17     s -- sigmoid(x)
     18     """
     19     s = 1/(1+np.exp(-x))
     20     return s
     21 
     22 def relu(x):
     23     """
     24     Compute the relu of x
     25 
     26     Arguments:
     27     x -- A scalar or numpy array of any size.
     28 
     29     Return:
     30     s -- relu(x)
     31     """
     32     s = np.maximum(0,x)
     33     
     34     return s
     35 
     36 def load_planar_dataset(seed):
     37     
     38     np.random.seed(seed)
     39     
     40     m = 400 # number of examples
     41     N = int(m/2) # number of points per class
     42     D = 2 # dimensionality
     43     X = np.zeros((m,D)) # data matrix where each row is a single example
     44     Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
     45     a = 4 # maximum ray of the flower
     46 
     47     for j in range(2):
     48         ix = range(N*j,N*(j+1))
     49         t = np.linspace(j*3.12,(j+1)*3.12,N) + np.random.randn(N)*0.2 # theta
     50         r = a*np.sin(4*t) + np.random.randn(N)*0.2 # radius
     51         X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]
     52         Y[ix] = j
     53         
     54     X = X.T
     55     Y = Y.T
     56 
     57     return X, Y
     58 
     59 def initialize_parameters(layer_dims):
     60     """
     61     Arguments:
     62     layer_dims -- python array (list) containing the dimensions of each layer in our network
     63     
     64     Returns:
     65     parameters -- python dictionary containing your parameters "W1", "b1", ..., "WL", "bL":
     66                     W1 -- weight matrix of shape (layer_dims[l], layer_dims[l-1])
     67                     b1 -- bias vector of shape (layer_dims[l], 1)
     68                     Wl -- weight matrix of shape (layer_dims[l-1], layer_dims[l])
     69                     bl -- bias vector of shape (1, layer_dims[l])
     70                     
     71     Tips:
     72     - For example: the layer_dims for the "Planar Data classification model" would have been [2,2,1]. 
     73     This means W1's shape was (2,2), b1 was (1,2), W2 was (2,1) and b2 was (1,1). Now you have to generalize it!
     74     - In the for loop, use parameters['W' + str(l)] to access Wl, where l is the iterative integer.
     75     """
     76     
     77     np.random.seed(3)
     78     parameters = {}
     79     L = len(layer_dims) # number of layers in the network
     80 
     81     for l in range(1, L):
     82         parameters['W' + str(l)] = np.random.randn(layer_dims[l], layer_dims[l-1]) / np.sqrt(layer_dims[l-1])
     83         parameters['b' + str(l)] = np.zeros((layer_dims[l], 1))
     84         
     85         assert(parameters['W' + str(l)].shape == layer_dims[l], layer_dims[l-1])
     86         assert(parameters['W' + str(l)].shape == layer_dims[l], 1)
     87 
     88         
     89     return parameters
     90 
     91 def forward_propagation(X, parameters):
     92     """
     93     Implements the forward propagation (and computes the loss) presented in Figure 2.
     94     
     95     Arguments:
     96     X -- input dataset, of shape (input size, number of examples)
     97     parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
     98                     W1 -- weight matrix of shape ()
     99                     b1 -- bias vector of shape ()
    100                     W2 -- weight matrix of shape ()
    101                     b2 -- bias vector of shape ()
    102                     W3 -- weight matrix of shape ()
    103                     b3 -- bias vector of shape ()
    104     
    105     Returns:
    106     loss -- the loss function (vanilla logistic loss)
    107     """
    108         
    109     # retrieve parameters
    110     W1 = parameters["W1"]
    111     b1 = parameters["b1"]
    112     W2 = parameters["W2"]
    113     b2 = parameters["b2"]
    114     W3 = parameters["W3"]
    115     b3 = parameters["b3"]
    116     
    117     # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    118     Z1 = np.dot(W1, X) + b1
    119     A1 = relu(Z1)
    120     Z2 = np.dot(W2, A1) + b2
    121     A2 = relu(Z2)
    122     Z3 = np.dot(W3, A2) + b3
    123     A3 = sigmoid(Z3)
    124     
    125     cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)
    126     
    127     return A3, cache
    128 
    129 def backward_propagation(X, Y, cache):
    130     """
    131     Implement the backward propagation presented in figure 2.
    132     
    133     Arguments:
    134     X -- input dataset, of shape (input size, number of examples)
    135     Y -- true "label" vector (containing 0 if cat, 1 if non-cat)
    136     cache -- cache output from forward_propagation()
    137     
    138     Returns:
    139     gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    140     """
    141     m = X.shape[1]
    142     (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    143     
    144     dZ3 = A3 - Y
    145     dW3 = 1./m * np.dot(dZ3, A2.T)
    146     db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    147     
    148     dA2 = np.dot(W3.T, dZ3)
    149     dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    150     dW2 = 1./m * np.dot(dZ2, A1.T)
    151     db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    152     
    153     dA1 = np.dot(W2.T, dZ2)
    154     dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    155     dW1 = 1./m * np.dot(dZ1, X.T)
    156     db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)
    157     
    158     gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
    159                  "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
    160                  "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}
    161     
    162     return gradients
    163 
    164 def update_parameters(parameters, grads, learning_rate):
    165     """
    166     Update parameters using gradient descent
    167     
    168     Arguments:
    169     parameters -- python dictionary containing your parameters:
    170                     parameters['W' + str(i)] = Wi
    171                     parameters['b' + str(i)] = bi
    172     grads -- python dictionary containing your gradients for each parameters:
    173                     grads['dW' + str(i)] = dWi
    174                     grads['db' + str(i)] = dbi
    175     learning_rate -- the learning rate, scalar.
    176     
    177     Returns:
    178     parameters -- python dictionary containing your updated parameters 
    179     """
    180     
    181     n = len(parameters) // 2 # number of layers in the neural networks
    182 
    183     # Update rule for each parameter
    184     for k in range(n):
    185         parameters["W" + str(k+1)] = parameters["W" + str(k+1)] - learning_rate * grads["dW" + str(k+1)]
    186         parameters["b" + str(k+1)] = parameters["b" + str(k+1)] - learning_rate * grads["db" + str(k+1)]
    187         
    188     return parameters
    189 
    190 def predict(X, y, parameters):
    191     """
    192     This function is used to predict the results of a  n-layer neural network.
    193     
    194     Arguments:
    195     X -- data set of examples you would like to label
    196     parameters -- parameters of the trained model
    197     
    198     Returns:
    199     p -- predictions for the given dataset X
    200     """
    201     
    202     m = X.shape[1]
    203     p = np.zeros((1,m), dtype = np.int)
    204     
    205     # Forward propagation
    206     a3, caches = forward_propagation(X, parameters)
    207     
    208     # convert probas to 0/1 predictions
    209     for i in range(0, a3.shape[1]):
    210         if a3[0,i] > 0.5:
    211             p[0,i] = 1
    212         else:
    213             p[0,i] = 0
    214 
    215     # print results
    216 
    217     #print ("predictions: " + str(p[0,:]))
    218     #print ("true labels: " + str(y[0,:]))
    219     print("Accuracy: "  + str(np.mean((p[0,:] == y[0,:]))))
    220     
    221     return p
    222 
    223 def compute_cost(a3, Y):
    224     """
    225     Implement the cost function
    226     
    227     Arguments:
    228     a3 -- post-activation, output of forward propagation
    229     Y -- "true" labels vector, same shape as a3
    230     
    231     Returns:
    232     cost - value of the cost function
    233     """
    234     m = Y.shape[1]
    235     
    236     logprobs = np.multiply(-np.log(a3),Y) + np.multiply(-np.log(1 - a3), 1 - Y)
    237     cost = 1./m * np.nansum(logprobs)
    238     
    239     return cost
    240 
    241 def load_dataset():
    242     train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
    243     train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
    244     train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels
    245 
    246     test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
    247     test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
    248     test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels
    249 
    250     classes = np.array(test_dataset["list_classes"][:]) # the list of classes
    251     
    252     train_set_y = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    253     test_set_y = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    254     
    255     train_set_x_orig = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
    256     test_set_x_orig = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T
    257     
    258     train_set_x = train_set_x_orig/255
    259     test_set_x = test_set_x_orig/255
    260 
    261     return train_set_x, train_set_y, test_set_x, test_set_y, classes
    262 
    263 
    264 def predict_dec(parameters, X):
    265     """
    266     Used for plotting decision boundary.
    267     
    268     Arguments:
    269     parameters -- python dictionary containing your parameters 
    270     X -- input data of size (m, K)
    271     
    272     Returns
    273     predictions -- vector of predictions of our model (red: 0 / blue: 1)
    274     """
    275     
    276     # Predict using forward propagation and a classification threshold of 0.5
    277     a3, cache = forward_propagation(X, parameters)
    278     predictions = (a3>0.5)
    279     return predictions
    280 
    281 def load_planar_dataset(randomness, seed):
    282     
    283     np.random.seed(seed)
    284     
    285     m = 50
    286     N = int(m/2) # number of points per class
    287     D = 2 # dimensionality
    288     X = np.zeros((m,D)) # data matrix where each row is a single example
    289     Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue)
    290     a = 2 # maximum ray of the flower
    291 
    292     for j in range(2):
    293         
    294         ix = range(N*j,N*(j+1))
    295         if j == 0:
    296             t = np.linspace(j, 4*3.1415*(j+1),N) #+ np.random.randn(N)*randomness # theta
    297             r = 0.3*np.square(t) + np.random.randn(N)*randomness # radius
    298         if j == 1:
    299             t = np.linspace(j, 2*3.1415*(j+1),N) #+ np.random.randn(N)*randomness # theta
    300             r = 0.2*np.square(t) + np.random.randn(N)*randomness # radius
    301             
    302         X[ix] = np.c_[r*np.cos(t), r*np.sin(t)]
    303         Y[ix] = j
    304         
    305     X = X.T
    306     Y = Y.T
    307 
    308     return X, Y
    309 
    310 def plot_decision_boundary(model, X, y):
    311     # Set min and max values and give it some padding
    312     x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1
    313     y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1
    314     h = 0.01
    315     # Generate a grid of points with distance h between them
    316     xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
    317     # Predict the function value for the whole grid
    318     Z = model(np.c_[xx.ravel(), yy.ravel()])
    319     Z = Z.reshape(xx.shape)
    320     # Plot the contour and training examples
    321     plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
    322     plt.ylabel('x2')
    323     plt.xlabel('x1')
    324     plt.scatter(X[0, :], X[1, :], c=np.squeeze(y), cmap=plt.cm.Spectral)
    325     plt.show()
    326     
    327 def load_2D_dataset():
    328     data = scipy.io.loadmat('datasets/data.mat')
    329     train_X = data['X'].T
    330     train_Y = data['y'].T
    331     test_X = data['Xval'].T
    332     test_Y = data['yval'].T
    333 
    334     #plt.scatter(train_X[0, :], train_X[1, :], c=np.squeeze(train_Y), s=40, cmap=plt.cm.Spectral);
    335     
    336     return train_X, train_Y, test_X, test_Y

    2. Build Model

     1 def model(X, Y, learning_rate = 0.3, num_iterations = 30000, print_cost = True, lambd = 0, keep_prob = 1):
     2     """
     3     Implements a three-layer neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SIGMOID.
     4     
     5     Arguments:
     6     X -- input data, of shape (input size, number of examples)
     7     Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (output size, number of examples)
     8     learning_rate -- learning rate of the optimization
     9     num_iterations -- number of iterations of the optimization loop
    10     print_cost -- If True, print the cost every 10000 iterations
    11     lambd -- regularization hyperparameter, scalar
    12     keep_prob - probability of keeping a neuron active during drop-out, scalar.
    13     
    14     Returns:
    15     parameters -- parameters learned by the model. They can then be used to predict.
    16     """
    17         
    18     grads = {}
    19     costs = []                            # to keep track of the cost
    20     m = X.shape[1]                        # number of examples
    21     layers_dims = [X.shape[0], 20, 3, 1]
    22     
    23     # Initialize parameters dictionary.
    24     parameters = initialize_parameters(layers_dims)
    25 
    26     # Loop (gradient descent)
    27 
    28     for i in range(0, num_iterations):
    29 
    30         # Forward propagation: LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID.
    31         if keep_prob == 1:
    32             a3, cache = forward_propagation(X, parameters)
    33         elif keep_prob < 1:
    34             a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
    35         
    36         # Cost function
    37         if lambd == 0:
    38             cost = compute_cost(a3, Y)
    39         else:
    40             cost = compute_cost_with_regularization(a3, Y, parameters, lambd)
    41             
    42         # Backward propagation.
    43         assert(lambd==0 or keep_prob==1)    # it is possible to use both L2 regularization and dropout, 
    44                                             # but this assignment will only explore one at a time
    45         if lambd == 0 and keep_prob == 1:
    46             grads = backward_propagation(X, Y, cache)
    47         elif lambd != 0:
    48             grads = backward_propagation_with_regularization(X, Y, cache, lambd)
    49         elif keep_prob < 1:
    50             grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)
    51         
    52         # Update parameters.
    53         parameters = update_parameters(parameters, grads, learning_rate)
    54         
    55         # Print the loss every 10000 iterations
    56         if print_cost and i % 10000 == 0:
    57             print("Cost after iteration {}: {}".format(i, cost))
    58         if print_cost and i % 1000 == 0:
    59             costs.append(cost)
    60     
    61     # plot the cost
    62     plt.plot(costs)
    63     plt.ylabel('cost')
    64     plt.xlabel('iterations (x1,000)')
    65     plt.title("Learning rate =" + str(learning_rate))
    66     plt.show()
    67     
    68     return parameters

     3. Build without any regularzation

     1 parameters = model(train_X, train_Y)
     2 print ("On the training set:")
     3 predictions_train = predict(train_X, train_Y, parameters)
     4 print ("On the test set:")
     5 predictions_test = predict(test_X, test_Y, parameters)
     6 plt.title("Model without regularization")
     7 axes = plt.gca()
     8 axes.set_xlim([-0.75,0.40])
     9 axes.set_ylim([-0.75,0.65])
    10 plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

    4. Build model with L2 regularzation:

     1 #L2 regularization compute_cost function:
     2 
     3 def compute_cost_with_regularization(A3, Y, parameters, lambd):
     4     """
     5     Implement the cost function with L2 regularization. See formula (2) above.
     6     
     7     Arguments:
     8     A3 -- post-activation, output of forward propagation, of shape (output size, number of examples)
     9     Y -- "true" labels vector, of shape (output size, number of examples)
    10     parameters -- python dictionary containing parameters of the model
    11     
    12     Returns:
    13     cost - value of the regularized loss function (formula (2))
    14     """
    15     m = Y.shape[1]
    16     W1 = parameters["W1"]
    17     W2 = parameters["W2"]
    18     W3 = parameters["W3"]
    19     
    20     cross_entropy_cost = compute_cost(A3, Y) # This gives you the cross-entropy part of the cost
    21     
    22     ### START CODE HERE ### (approx. 1 line)
    23     L2_regularization_cost = (1.0/(2*m))*lambd*(np.sum(np.square(W1))+np.sum(np.square(W2))+np.sum(np.square(W3)))
    24     ### END CODER HERE ###
    25     
    26     cost = cross_entropy_cost + L2_regularization_cost
    27     
    28     return cost
    29 
    30 # L2 backward_propagation regularization:
    31 
    32 def backward_propagation_with_regularization(X, Y, cache, lambd):
    33     """
    34     Implements the backward propagation of our baseline model to which we added an L2 regularization.
    35     
    36     Arguments:
    37     X -- input dataset, of shape (input size, number of examples)
    38     Y -- "true" labels vector, of shape (output size, number of examples)
    39     cache -- cache output from forward_propagation()
    40     lambd -- regularization hyperparameter, scalar
    41     
    42     Returns:
    43     gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    44     """
    45     
    46     m = X.shape[1]
    47     (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    48     
    49     dZ3 = A3 - Y
    50     
    51     ### START CODE HERE ### (approx. 1 line)
    52     dW3 = 1./m * np.dot(dZ3, A2.T) + (lambd/m)*W3
    53     ### END CODE HERE ###
    54     db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    55     
    56     dA2 = np.dot(W3.T, dZ3)
    57     dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    58     ### START CODE HERE ### (approx. 1 line)
    59     dW2 = 1./m * np.dot(dZ2, A1.T) + (lambd/m)*W2
    60     ### END CODE HERE ###
    61     db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    62     
    63     dA1 = np.dot(W2.T, dZ2)
    64     dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    65     ### START CODE HERE ### (approx. 1 line)
    66     dW1 = 1./m * np.dot(dZ1, X.T) + (lambd/m)*W1
    67     ### END CODE HERE ###
    68     db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)
    69     
    70     gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,
    71                  "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, 
    72                  "dZ1": dZ1, "dW1": dW1, "db1": db1}
    73     
    74     return gradients
    75 
    76 #Build with L2 regularization model:
    77 parameters = model(train_X, train_Y, lambd = 0.7)
    78 print ("On the train set:")
    79 predictions_train = predict(train_X, train_Y, parameters)
    80 print ("On the test set:")
    81 predictions_test = predict(test_X, test_Y, parameters)
    82 plt.title("Model with L2-regularization")
    83 axes = plt.gca()
    84 axes.set_xlim([-0.75,0.40])
    85 axes.set_ylim([-0.75,0.65])
    86 plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

    Observations:

    • The value of λ is a hyperparameter that you can tune using a dev set.
    • L2 regularization makes your decision boundary smoother. If λ is too large, it is also possible to "oversmooth", resulting in a model with high bias.

    What is L2-regularization actually doing?:

    L2-regularization relies on the assumption that a model with small weights is simpler than a model with large weights. Thus, by penalizing the square values of the weights in the cost function you drive all the weights to smaller values. It becomes too costly for the cost to have large weights! This leads to a smoother model in which the output changes more slowly as the input changes.

    **What you should remember** -- the implications of L2-regularization on: - The cost computation: - A regularization term is added to the cost - The backpropagation function: - There are extra terms in the gradients with respect to weight matrices - Weights end up smaller ("weight decay"): - Weights are pushed to smaller values.

    5. Build modle with Dropout 

    Dropout is a widely used regularization technique that is specific to deep learning. It randomly shuts down some neurons in each iteration,

    You shut down each neuron of  a layer with probability 1-keep_prob or keep it with probability keep_prob.The dropped neurons don't contribute to the training in both the forward and backward propagations of the iteration. When you shut some neurons down,you actually modify your model ,you train a different model that uses only a subset of your neurons. 

    5.1 Forward propagation with dropout:

    We just add dropout to the hidden layers, not apply dropout to the input layer or output layer.

     1 def forward_propagation_with_dropout(X, parameters, keep_prob = 0.5):
     2     """
     3     Implements the forward propagation: LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.
     4     
     5     Arguments:
     6     X -- input dataset, of shape (2, number of examples)
     7     parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
     8                     W1 -- weight matrix of shape (20, 2)
     9                     b1 -- bias vector of shape (20, 1)
    10                     W2 -- weight matrix of shape (3, 20)
    11                     b2 -- bias vector of shape (3, 1)
    12                     W3 -- weight matrix of shape (1, 3)
    13                     b3 -- bias vector of shape (1, 1)
    14     keep_prob - probability of keeping a neuron active during drop-out, scalar
    15     
    16     Returns:
    17     A3 -- last activation value, output of the forward propagation, of shape (1,1)
    18     cache -- tuple, information stored for computing the backward propagation
    19     """
    20     
    21     np.random.seed(1)
    22     
    23     # retrieve parameters
    24     W1 = parameters["W1"]
    25     b1 = parameters["b1"]
    26     W2 = parameters["W2"]
    27     b2 = parameters["b2"]
    28     W3 = parameters["W3"]
    29     b3 = parameters["b3"]
    30     
    31     # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    32     Z1 = np.dot(W1, X) + b1
    33     A1 = relu(Z1)
    34     ### START CODE HERE ### (approx. 4 lines)         # Steps 1-4 below correspond to the Steps 1-4 described above. 
    35     D1 = np.random.rand(A1.shape[0],A1.shape[1])                                         # Step 1: initialize matrix D1 = np.random.rand(..., ...)
    36     D1 = (D1<keep_prob)                                         # Step 2: convert entries of D1 to 0 or 1 (using keep_prob as the threshold)
    37     A1 = A1*D1                                         # Step 3: shut down some neurons of A1
    38     A1 = A1/keep_prob                                        # Step 4: scale the value of neurons that haven't been shut down
    39     ### END CODE HERE ###
    40     Z2 = np.dot(W2, A1) + b2
    41     A2 = relu(Z2)
    42     ### START CODE HERE ### (approx. 4 lines)
    43     D2 = np.random.rand(A2.shape[0],A2.shape[1])                                         # Step 1: initialize matrix D2 = np.random.rand(..., ...)
    44     D2 = (D2<keep_prob)                                         # Step 2: convert entries of D2 to 0 or 1 (using keep_prob as the threshold)
    45     A2 = A2*D2                                         # Step 3: shut down some neurons of A2
    46     A2 = A2/keep_prob                                         # Step 4: scale the value of neurons that haven't been shut down
    47     ### END CODE HERE ###
    48     Z3 = np.dot(W3, A2) + b3
    49     A3 = sigmoid(Z3)
    50     
    51     cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)
    52     
    53     return A3, cache

     5.2  Backward propagation with dropout:

     1 def backward_propagation_with_dropout(X, Y, cache, keep_prob):
     2     """
     3     Implements the backward propagation of our baseline model to which we added dropout.
     4     
     5     Arguments:
     6     X -- input dataset, of shape (2, number of examples)
     7     Y -- "true" labels vector, of shape (output size, number of examples)
     8     cache -- cache output from forward_propagation_with_dropout()
     9     keep_prob - probability of keeping a neuron active during drop-out, scalar
    10     
    11     Returns:
    12     gradients -- A dictionary with the gradients with respect to each parameter, activation and pre-activation variables
    13     """
    14     
    15     m = X.shape[1]
    16     (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache
    17     
    18     dZ3 = A3 - Y
    19     dW3 = 1./m * np.dot(dZ3, A2.T)
    20     db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
    21     dA2 = np.dot(W3.T, dZ3)
    22     ### START CODE HERE ### (≈ 2 lines of code)
    23     dA2 = dA2*D2              # Step 1: Apply mask D2 to shut down the same neurons as during the forward propagation
    24     dA2 = dA2/keep_prob             # Step 2: Scale the value of neurons that haven't been shut down
    25     ### END CODE HERE ###
    26     dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    27     dW2 = 1./m * np.dot(dZ2, A1.T)
    28     db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
    29     
    30     dA1 = np.dot(W2.T, dZ2)
    31     ### START CODE HERE ### (≈ 2 lines of code)
    32     dA1 = dA1*D1              # Step 1: Apply mask D1 to shut down the same neurons as during the forward propagation
    33     dA1 = dA1/keep_prob              # Step 2: Scale the value of neurons that haven't been shut down
    34     ### END CODE HERE ###
    35     dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    36     dW1 = 1./m * np.dot(dZ1, X.T)
    37     db1 = 1./m * np.sum(dZ1, axis=1, keepdims = True)
    38     
    39     gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,"dA2": dA2,
    40                  "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1, 
    41                  "dZ1": dZ1, "dW1": dW1, "db1": db1}
    42     
    43     return gradients

     5.3 Build model with dropout :

     1 parameters = model(train_X, train_Y, keep_prob = 0.86, learning_rate = 0.3)
     2 
     3 print ("On the train set:")
     4 predictions_train = predict(train_X, train_Y, parameters)
     5 print ("On the test set:")
     6 predictions_test = predict(test_X, test_Y, parameters)
     7 plt.title("Model with dropout")
     8 axes = plt.gca()
     9 axes.set_xlim([-0.75,0.40])
    10 axes.set_ylim([-0.75,0.65])
    11 plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)

     6. Gradient Checking:

    f'=(f(x+e)-f(x-e))/2e 双边误差 e逼近无穷小

     1 #forward_propagation function
     2 def forward_propagation(x, theta):
     3     """
     4     Implement the linear forward propagation (compute J) presented in Figure 1 (J(theta) = theta * x)
     5     
     6     Arguments:
     7     x -- a real-valued input
     8     theta -- our parameter, a real number as well
     9     
    10     Returns:
    11     J -- the value of function J, computed using the formula J(theta) = theta * x
    12     """
    13     
    14     ### START CODE HERE ### (approx. 1 line)
    15     J = np.multiply(x,theta)
    16     ### END CODE HERE ###
    17     
    18     return J
    19 
    20 #backward_propagation function:
    21 
    22 def backward_propagation(x, theta):
    23     """
    24     Computes the derivative of J with respect to theta (see Figure 1).
    25     
    26     Arguments:
    27     x -- a real-valued input
    28     theta -- our parameter, a real number as well
    29     
    30     Returns:
    31     dtheta -- the gradient of the cost with respect to theta
    32     """
    33     
    34     ### START CODE HERE ### (approx. 1 line)
    35     dtheta = x
    36     ### END CODE HERE ###
    37     
    38     return dtheta
    39 
    40 #gradient_check function:
    41 def gradient_check(x, theta, epsilon = 1e-7):
    42     """
    43     Implement the backward propagation presented in Figure 1.
    44     
    45     Arguments:
    46     x -- a real-valued input
    47     theta -- our parameter, a real number as well
    48     epsilon -- tiny shift to the input to compute approximated gradient with formula(1)
    49     
    50     Returns:
    51     difference -- difference (2) between the approximated gradient and the backward propagation gradient
    52     """
    53     
    54     # Compute gradapprox using left side of formula (1). epsilon is small enough, you don't need to worry about the limit.
    55     ### START CODE HERE ### (approx. 5 lines)
    56     thetaplus = theta+epsilon                             # Step 1
    57     thetaminus = theta-epsilon                              # Step 2
    58     J_plus = forward_propagation(x,thetaplus)                                  # Step 3
    59     J_minus = forward_propagation(x,thetaminus)                                 # Step 4
    60     gradapprox = (J_plus-J_minus)/(2*epsilon)                              # Step 5
    61     ### END CODE HERE ###
    62     
    63     # Check if gradapprox is close enough to the output of backward_propagation()
    64     ### START CODE HERE ### (approx. 1 line)
    65     grad = backward_propagation(x,theta)
    66     ### END CODE HERE ###
    67     
    68     ### START CODE HERE ### (approx. 1 line)
    69     numerator = np.linalg.norm(grad-gradapprox)                               # Step 1'
    70     denominator = np.linalg.norm(grad)+np.linalg.norm(gradapprox)                             # Step 2'
    71     difference = numerator/denominator                              # Step 3'
    72     ### END CODE HERE ###
    73     
    74     if difference < 1e-7:
    75         print ("The gradient is correct!")
    76     else:
    77         print ("The gradient is wrong!")
    78     
    79     return difference

     N-dimensional gradient checking:

      1 def forward_propagation_n(X, Y, parameters):
      2     """
      3     Implements the forward propagation (and computes the cost) presented in Figure 3.
      4     
      5     Arguments:
      6     X -- training set for m examples
      7     Y -- labels for m examples 
      8     parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
      9                     W1 -- weight matrix of shape (5, 4)
     10                     b1 -- bias vector of shape (5, 1)
     11                     W2 -- weight matrix of shape (3, 5)
     12                     b2 -- bias vector of shape (3, 1)
     13                     W3 -- weight matrix of shape (1, 3)
     14                     b3 -- bias vector of shape (1, 1)
     15     
     16     Returns:
     17     cost -- the cost function (logistic cost for one example)
     18     """
     19     
     20     # retrieve parameters
     21     m = X.shape[1]
     22     W1 = parameters["W1"]
     23     b1 = parameters["b1"]
     24     W2 = parameters["W2"]
     25     b2 = parameters["b2"]
     26     W3 = parameters["W3"]
     27     b3 = parameters["b3"]
     28 
     29     # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
     30     Z1 = np.dot(W1, X) + b1
     31     A1 = relu(Z1)
     32     Z2 = np.dot(W2, A1) + b2
     33     A2 = relu(Z2)
     34     Z3 = np.dot(W3, A2) + b3
     35     A3 = sigmoid(Z3)
     36 
     37     # Cost
     38     logprobs = np.multiply(-np.log(A3),Y) + np.multiply(-np.log(1 - A3), 1 - Y)
     39     cost = 1./m * np.sum(logprobs)
     40     
     41     cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)
     42     
     43     return cost, cache
     44 
     45 def backward_propagation_n(X, Y, cache):
     46     """
     47     Implement the backward propagation presented in figure 2.
     48     
     49     Arguments:
     50     X -- input datapoint, of shape (input size, 1)
     51     Y -- true "label"
     52     cache -- cache output from forward_propagation_n()
     53     
     54     Returns:
     55     gradients -- A dictionary with the gradients of the cost with respect to each parameter, activation and pre-activation variables.
     56     """
     57     
     58     m = X.shape[1]
     59     (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
     60     
     61     dZ3 = A3 - Y
     62     dW3 = 1./m * np.dot(dZ3, A2.T)
     63     db3 = 1./m * np.sum(dZ3, axis=1, keepdims = True)
     64     
     65     dA2 = np.dot(W3.T, dZ3)
     66     dZ2 = np.multiply(dA2, np.int64(A2 > 0))
     67     dW2 = 1./m * np.dot(dZ2, A1.T) * 2
     68     db2 = 1./m * np.sum(dZ2, axis=1, keepdims = True)
     69     
     70     dA1 = np.dot(W2.T, dZ2)
     71     dZ1 = np.multiply(dA1, np.int64(A1 > 0))
     72     dW1 = 1./m * np.dot(dZ1, X.T)
     73     db1 = 4./m * np.sum(dZ1, axis=1, keepdims = True)
     74     
     75     gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
     76                  "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
     77                  "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}
     78     
     79     return gradients
     80 
     81 
     82 def dictionary_to_vector(parameters):
     83     """
     84     Roll all our parameters dictionary into a single vector satisfying our specific required shape.
     85     """
     86     keys = []
     87     count = 0
     88     for key in ["W1", "b1", "W2", "b2", "W3", "b3"]:
     89         
     90         # flatten parameter
     91         new_vector = np.reshape(parameters[key], (-1,1))
     92         keys = keys + [key]*new_vector.shape[0]
     93         
     94         if count == 0:
     95             theta = new_vector
     96         else:
     97             theta = np.concatenate((theta, new_vector), axis=0)
     98         count = count + 1
     99 
    100     return theta, keys
    101 
    102 def vector_to_dictionary(theta):
    103     """
    104     Unroll all our parameters dictionary from a single vector satisfying our specific required shape.
    105     """
    106     parameters = {}
    107     parameters["W1"] = theta[:20].reshape((5,4))
    108     parameters["b1"] = theta[20:25].reshape((5,1))
    109     parameters["W2"] = theta[25:40].reshape((3,5))
    110     parameters["b2"] = theta[40:43].reshape((3,1))
    111     parameters["W3"] = theta[43:46].reshape((1,3))
    112     parameters["b3"] = theta[46:47].reshape((1,1))
    113 
    114     return parameters
    115 def gradients_to_vector(gradients):
    116     """
    117     Roll all our gradients dictionary into a single vector satisfying our specific required shape.
    118     """
    119     
    120     count = 0
    121     for key in ["dW1", "db1", "dW2", "db2", "dW3", "db3"]:
    122         # flatten parameter
    123         new_vector = np.reshape(gradients[key], (-1,1))
    124         
    125         if count == 0:
    126             theta = new_vector
    127         else:
    128             theta = np.concatenate((theta, new_vector), axis=0)
    129         count = count + 1
    130 
    131     return theta
    132 
    133 def gradient_check_n(parameters, gradients, X, Y, epsilon = 1e-7):
    134     """
    135     Checks if backward_propagation_n computes correctly the gradient of the cost output by forward_propagation_n
    136     
    137     Arguments:
    138     parameters -- python dictionary containing your parameters "W1", "b1", "W2", "b2", "W3", "b3":
    139     grad -- output of backward_propagation_n, contains gradients of the cost with respect to the parameters. 
    140     x -- input datapoint, of shape (input size, 1)
    141     y -- true "label"
    142     epsilon -- tiny shift to the input to compute approximated gradient with formula(1)
    143     
    144     Returns:
    145     difference -- difference (2) between the approximated gradient and the backward propagation gradient
    146     """
    147     
    148     # Set-up variables
    149     parameters_values, _ = dictionary_to_vector(parameters)
    150     grad = gradients_to_vector(gradients)
    151     num_parameters = parameters_values.shape[0]
    152     J_plus = np.zeros((num_parameters, 1))
    153     J_minus = np.zeros((num_parameters, 1))
    154     gradapprox = np.zeros((num_parameters, 1))
    155     
    156     # Compute gradapprox
    157     for i in range(num_parameters):
    158         
    159         # Compute J_plus[i]. Inputs: "parameters_values, epsilon". Output = "J_plus[i]".
    160         # "_" is used because the function you have to outputs two parameters but we only care about the first one
    161         ### START CODE HERE ### (approx. 3 lines)
    162         thetaplus = np.copy(parameters_values)                                      # Step 1
    163         thetaplus[i][0] =thetaplus[i][0]+epsilon                                # Step 2
    164         J_plus[i], _ =forward_propagation_n(X,Y,vector_to_dictionary(thetaplus))                                   # Step 3
    165         ### END CODE HERE ###
    166         
    167         # Compute J_minus[i]. Inputs: "parameters_values, epsilon". Output = "J_minus[i]".
    168         ### START CODE HERE ### (approx. 3 lines)
    169         thetaminus = np.copy(parameters_values)                                     # Step 1
    170         thetaminus[i][0] = thetaminus[i][0]-epsilon                               # Step 2        
    171         J_minus[i], _ = forward_propagation_n(X,Y,vector_to_dictionary(thetaminus))                                  # Step 3
    172         ### END CODE HERE ###
    173         
    174         # Compute gradapprox[i]
    175         ### START CODE HERE ### (approx. 1 line)
    176         gradapprox[i] = (J_plus[i]-J_minus[i])/(2*epsilon)
    177         ### END CODE HERE ###
    178     
    179     # Compare gradapprox to backward propagation gradients by computing difference.
    180     ### START CODE HERE ### (approx. 1 line)
    181     numerator = np.linalg.norm(gradients_to_vector(gradients)-gradapprox)                                           # Step 1'
    182     denominator = np.linalg.norm(gradients_to_vector(gradients))+np.linalg.norm(gradapprox)                                         # Step 2'
    183     difference = numerator/denominator                                          # Step 3'
    184     ### END CODE HERE ###
    185 
    186     if difference > 1e-7:
    187         print ("33[93m" + "There is a mistake in the backward propagation! difference = " + str(difference) + "33[0m")
    188     else:
    189         print ("33[92m" + "Your backward propagation works perfectly fine! difference = " + str(difference) + "33[0m")
    190     
    191     return difference
  • 相关阅读:
    arcgis 9.3安装步骤
    ENVI分类介绍
    转 经典的KNN算法解释
    彩色图像增强方法
    android中怎么让 button组件居中显示
    Android异步查询框架AsyncQueryHandler使用简介
    解决android中checkbox全部选择的操作
    System.exit(0)和System.exit(1)区别
    Andye献礼2013Android开发各种小功能大全(第一版)
    Android中退出多个Activity的两个经典方法
  • 原文地址:https://www.cnblogs.com/easy-wang/p/10073872.html
Copyright © 2011-2022 走看看