zoukankan      html  css  js  c++  java
  • 【LNOI 2014】 LCA

    【题目链接】

             点击打开链接

    【算法】

               考虑求lca(x,y)的深度

               我们可以将从根到x路径上的点都打上标记,然后,询问y到根上路径的权值和

               那么,求sigma(depth(lca(i,z)))(l <= i <= r ),我们可以将区间[l,r]中的点依次打上标记,然后,询问点z到根路径

               上的权值和

               因为此题有多组询问,显然在线很难做,因此,我们考虑离线计算答案

               求sigma(depth(lca(i,z))) (l <= i <= r),我们可以转化为

               sigma(depth(lca(i,z))) ( 0 <= i <= r) - sigma(depth(lca(i,z))) (0 <= i <= l - 1)

               那么,树链剖分/动态树都可以解决这道题,树链剖分的时间复杂度是O((n + q) log(n)^2)的,而动态树的时间复杂度是             O((n + q) log(n))的

    【代码】

               由于笔者太弱,不会动态树,所以这份代码是树链剖分的写法

             

    #include<bits/stdc++.h>
    using namespace std;
    #define MAXM 50010
    const int P = 201314;
    
    struct Edge
    {
        int to,nxt;
    } e[MAXM];
    struct Query
    {
        int pos,opt,z,id;    
    } q[MAXM*2];
    
    int i,n,m,f,timer,tot,cnt,now,l,r,z;
    int dfn[MAXM],size[MAXM],top[MAXM],head[MAXM],son[MAXM],ans[MAXM],fa[MAXM];
    
    struct SegmentTree
    {
            struct Node
            {
                    int l,r;
                    int sum,tag;
            } Tree[MAXM*4];
            inline void build(int index,int l,int r)
            {
                    int mid;
                    Tree[index].l = l; Tree[index].r = r;
                    Tree[index].sum = Tree[index].tag = 0;
                    if (l == r) return;
                    mid = (l + r) >> 1;
                    build(index<<1,l,mid);
                    build(index<<1|1,mid+1,r);
            }
            inline void pushdown(int index)
            {
                    int l = Tree[index].l,r = Tree[index].r;
                    int mid = (l + r) >> 1;
                    if (Tree[index].tag)
                    {
                            Tree[index<<1].sum = (Tree[index<<1].sum + (mid - l + 1) * Tree[index].tag) % P;
                            Tree[index<<1|1].sum = (Tree[index<<1|1].sum + (r - mid) * Tree[index].tag) % P;
                            Tree[index<<1].tag = (Tree[index<<1].tag + Tree[index].tag) % P;
                            Tree[index<<1|1].tag = (Tree[index<<1|1].tag + Tree[index].tag) % P;
                            Tree[index].tag = 0;
                    }
            }
            inline void update(int index)
            {
                    Tree[index].sum = (Tree[index<<1].sum + Tree[index<<1|1].sum) % P;
            }
            inline void modify(int index,int l,int r,int val)
            {
                    int mid;
                    if (Tree[index].l == l && Tree[index].r == r)
                    {
                            Tree[index].sum = (Tree[index].sum + (r - l + 1) * val) % P;
                            Tree[index].tag = (Tree[index].tag + val) % P;
                            return;
                    }
                    pushdown(index);
                    mid = (Tree[index].l + Tree[index].r) >> 1;
                    if (mid >= r) modify(index<<1,l,r,val);
                    else if (mid + 1 <= l) modify(index<<1|1,l,r,val);
                    else
                    {
                            modify(index<<1,l,mid,val);
                            modify(index<<1|1,mid+1,r,val);
                    }
                    update(index);
            }
            inline int query(int index,int l,int r)
            {
                    int mid;
                    if (Tree[index].l == l && Tree[index].r == r) return Tree[index].sum;
                    pushdown(index);
                    mid = (Tree[index].l + Tree[index].r) >> 1;
                    if (mid >= r) return query(index<<1,l,r);
                    else if (mid + 1 <= l) return query(index<<1|1,l,r);
                    else return (query(index<<1,l,mid) + query(index<<1|1,mid+1,r)) % P;
            }
    } T;
    inline bool cmp(Query a,Query b) 
    {
        return a.pos < b.pos;
    }
    inline void add(int u,int v)
    {
            tot++;
            e[tot] = (Edge){v,head[u]};
            head[u] = tot;
    }
    inline void dfs1(int u)
    {
            int i,v;
            size[u] = 1;
            for (i = head[u]; i; i = e[i].nxt)
            {
                    v = e[i].to;
                    dfs1(v);
                    size[u] += size[v];
                    if (size[v] > size[son[u]] || !son[u]) son[u] = v;
            }
    }
    inline void dfs2(int u,int tp)
    {
            int i,v;
            top[u] = tp;
            dfn[u] = ++timer;
            if (son[u]) dfs2(son[u],tp);     
            for (i = head[u]; i; i = e[i].nxt)
            {
                    v = e[i].to;
                    if (son[u] != v) dfs2(v,v);
            }
    }
    inline void modify(int pos)
    {
            int tp = top[pos];
            while (tp)
            {
                    T.modify(1,dfn[tp],dfn[pos],1);
                    pos = fa[tp]; tp = top[pos];
            }
            T.modify(1,1,dfn[pos],1);
    }
    inline int query(int pos)
    {
            int tp = top[pos],ans = 0;
            while (tp)
            {
                    ans = (ans + T.query(1,dfn[tp],dfn[pos])) % P;
                    pos = fa[tp]; tp = top[pos];
            }
            ans = (ans + T.query(1,1,dfn[pos])) % P;
            return ans;
    }
    
    int main()
    {
        
            scanf("%d%d",&n,&m);
            for (i = 1; i < n; i++) 
            {
                    scanf("%d",&fa[i]);
                    add(fa[i],i);    
            }
            dfs1(0);
            dfs2(0,0);
            T.build(1,1,timer);
            for (i = 1; i <= m; i++) 
            {
                    scanf("%d%d%d",&l,&r,&z);
                    if (l != 0) q[++cnt] = (Query){l-1,-1,z,i};
                    q[++cnt] = (Query){r,1,z,i};
            }
            sort(q+1,q+cnt+1,cmp);
            now = -1; 
            for (i = 1; i <= cnt; i++)
            {
                    while (now + 1 <= q[i].pos) 
                    {
                            now++;
                            modify(now);
                    } 
                    if (q[i].opt == 1) ans[q[i].id] = (ans[q[i].id] + query(q[i].z)) % P;
                    else ans[q[i].id] = (ans[q[i].id] - query(q[i].z) + P) % P;
            }
            for (i = 1; i <= m; i++) printf("%d
    ",ans[i]);
            
            return 0;
    }
  • 相关阅读:
    POJ 3411 Paid Roads(DFS)
    POJ 1699 Best Sequence(DFS)
    Codeforces Round #191 (Div. 2)
    Windows && Linux 搭建python开发环境
    zabbix 源码编译安装
    智能运维基础设施
    Redis
    ubuntu16.04 安装 mysql
    Python必须知道的基础语法
    ubuntu && CentOS && RedHat 离线安装docker
  • 原文地址:https://www.cnblogs.com/evenbao/p/9196302.html
Copyright © 2011-2022 走看看