zoukankan      html  css  js  c++  java
  • 文献阅读01-1-空间众包-最大化任务分配数量-代码实现

    代码介绍:

           文件数据格式:点的数量,边的数量,源点序号,汇点序号

                    每条边:起点,终点,容量

    从文件中读取数据,构建网络流图,使用dinic算法求解最大流,采用数组邻接表存储数据。

    求最大流过程:不断找一条源点到汇点的路径,若有,找出增广路径上每一段权值的最小值,然后构建残余网络。再在残余网络上寻找新的路径,再依据路径的最小值,构建新的残余网络,再寻找新的路径...直至某个残余网络找不到从源点到汇点的路径为止,最大流即为每次最小值之和。

    Dinic算法:

           先使用宽度优先搜索,根据源点到每个点的最短距离(边数)不同,对每个点进行分层,只要进行到计算出汇点的层次数,即为分层成功。

           之后利用深度优先搜索从前一层向后一层反复寻找增广路径,寻找的增广路径要求满足所有的点分别属于不同的层,且点应满足deppv=deppv-1+1。DFS过程中,进行到了汇点,则说明找到了一条增广路径,此时对总流量进行增加,并消减增广路径各边的容量,并添加反向边,即进行增广。找到一条增广路径后,回溯继续寻找下一个增广路径。

           DFS结束后,对残余网络再次进行分层,当分层操作无法算出汇点的层次是,即求得最大流。

       头文件:

      1 #include <queue>
      2 #include <fstream>
      3 #include <iostream>
      4 #include <string>
      5 using namespace std;
      6 const int inf = 0x3f3f3f3f;
      7 const int worker_number = 5000;
      8 const int task_number = 5000;
      9 
     10 struct Edge
     11 {
     12     int to;
     13     int next;
     14     int cap;
     15 };
     16 
     17 class Graph
     18 {
     19 private:
     20     int src;//源点
     21     int dst;//汇点
     22     int edge_num;//边数
     23     int note_num;//点数
     24     int num;
     25     int max_flow;
     26     int head[worker_number + task_number + 3];
     27     int cur[worker_number + task_number + 3];
     28     int level[worker_number + task_number];
     29     Edge edges[worker_number + task_number];
     30     queue<int> Q;
     31     void add_edge(int from,int to,int dis);
     32     bool bfs(int begin, int end);
     33     int dfs(int now,int flow);
     34     
     35 
     36 public:
     37     Graph(int n = 0, int m = 0, int s = 0, int d = 0);
     38     void read(string file_name);//从文件中读取数据
     39     int Dinic();
     40 };
     41 
     42 Graph::Graph(int n,int m,int s,int d)
     43 {
     44     this->note_num = n;
     45     this->edge_num = m;
     46     this->src = s;
     47     this->dst = d;
     48     this->max_flow = 0;
     49     this->num = -1;
     50 
     51     memset(this->head, -1, sizeof(this->head));
     52     memset(this->cur, -1, sizeof(this->cur));
     53     memset(this->level, -1, sizeof(this->level));
     54 }
     55 
     56 void Graph::add_edge(int from,int to,int dis)
     57 {
     58     this->edges[++this->num].next = this->head[from];
     59     this->edges[this->num].to = to;
     60     this->edges[this->num].cap = dis;
     61     this->head[from] = this->num;    
     62 }
     63 
     64 void Graph::read(string file_name)
     65 {
     66     ifstream fin(file_name);
     67     int x, y, z;
     68 
     69     if (fin.good())
     70     {
     71         //n结点数,m边数,s源点,d汇点
     72         fin >> this->note_num >> this->edge_num >> this->src >> this->dst;
     73         this->num = -1;
     74 
     75         for (int i = 0;i < this->edge_num;i++)
     76         {
     77             //边:起点,终点,容量
     78             fin >> x >> y >> z;
     79 
     80             this->add_edge(x, y, z);//添加边
     81             this->add_edge(y, x, 0);//添加反向边
     82         }
     83     }
     84     else
     85     {
     86         cout << "文件打开失败!" << endl;
     87         exit(0);
     88     }
     89 
     90     fin.close();
     91 }
     92 
     93 //利用bfs进行分层
     94 bool Graph::bfs(int begin, int end)
     95 {
     96     memset(this->level, -1, sizeof(this->level));//更新层次,对残余网络进行分层
     97     int now;//当前点
     98 
     99     while (!this->Q.empty())this->Q.pop();
    100     this->level[begin] = 0;//起点深度为0
    101     this->Q.push(begin);
    102 
    103     while (!this->Q.empty())
    104     {
    105         now = this->Q.front();
    106         this->Q.pop();
    107 
    108         for (int i = this->head[now];i != -1;i = this->edges[i].next)
    109         {
    110             //如果该点没有被标记层次并且该边的流量不为零
    111             if (this->level[this->edges[i].to] == -1 && this->edges[i].cap)
    112             {
    113                 this->level[this->edges[i].to] = this->level[now] + 1;
    114                 this->Q.push(this->edges[i].to);
    115             }
    116         }
    117     }
    118     
    119     return this->level[this->dst] != -1;//若没有到达汇点,则返回false
    120 }
    121 
    122 //flow为源点到now的路径中的最小边权
    123 int Graph::dfs(int now, int flow)
    124 {
    125     if (now == this->dst)return flow;//如果当前点为汇点,则返回flow
    126 
    127     int detla = flow, d, f;
    128     for (int i = this->cur[now];i != -1;i = this->edges[i].next)
    129     {
    130         //寻找路径时,点要属于不同的层次并且边为通
    131         if (this->level[this->edges[i].to] == (this->level[now] + 1) && (this->edges[i].cap > 0))
    132         {
    133             //向下递归,求后续结点的最大流量,即最小边权
    134             this->cur[now] = this->edges[i].next;
    135             d = (detla < this->edges[i].cap) ? detla : this->edges[i].cap;
    136             f = this->dfs(this->edges[i].to, d);
    137 
    138             this->edges[i].cap -= f;
    139             //处理反向边,存边时从0开始,边和其反向边相邻
    140             this->edges[i ^ 1].cap += f;
    141             detla -= f;//更新本节点的残余量
    142             //若本节点的残余量消耗完,则返回
    143             if (detla == 0)break;
    144         }
    145     }
    146 
    147     return flow - detla;//返回该点已经被允许流过的流量
    148 }
    149 
    150 int Graph::Dinic()
    151 {
    152     while (this->bfs(this->src, this->dst))
    153     {
    154         for (int i = 1;i <= this->note_num;i++)this->cur[i] = this->head[i];
    155         this->max_flow += this->dfs(this->src, inf);
    156     }
    157 
    158     return this->max_flow;
    159 }

      源文件:

     1 #include "标头.h"
     2 
     3 int main()
     4 {
     5     Graph G;
     6     string file_name;
     7 
     8     cout << "请输入存储数据的文件" << endl;
     9     cin >> file_name;
    10 
    11     G.read(file_name);
    12     cout << "最大流:" << G.Dinic() << endl;
    13 
    14     return 0;
    15
  • 相关阅读:
    c如何弹出保存路径/保存文件对话框
    c++ 读写txt方法
    windows获取环境变量
    Block UI 获取treelist column值
    MFC中如何弹出选择文件/文件夹对话框(C++)
    What can change the CID of a NX license server?
    spring之AOP
    spring注解开发
    spring配置Bean
    spring之IOC和DI实现
  • 原文地址:https://www.cnblogs.com/fangzhiyou/p/12340849.html
Copyright © 2011-2022 走看看