zoukankan      html  css  js  c++  java
  • 对所有CPU寄存器的简述(16位CPU14个,32位CPU16个)

    32位CPU所含有的寄存器有:
    4个数据寄存器(EAX、EBX、ECX和EDX)
    2个变址和指针寄存器(ESI和EDI)
    2个指针寄存器(ESP和EBP)
    6个段寄存器(ES、CS、SS、DS、FS和GS)
    1个指令指针寄存器(EIP)
    1个标志寄存器(EFlags)

    --------------------------------------------------
    1、数据寄存器

    寄存器AX和AL通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。累加器可用于乘、除、输入/输出等操作,它们的使用频率很高;
    寄存器BX称为基地址寄存器(Base Register)。它可作为存储器指针来使用;
    寄存器CX称为计数寄存器(Count Register)。在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用CL来指明移位的位数;
    寄存器DX称为数据寄存器(Data Register)。在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放I/O的端口地址。

    在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址,但在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果,而且也可作为指针寄存器,所以,这些32位寄存器更具有通用性。

    --------------------------------------------------
    2、变址寄存器

    SI 存储器指针、串指令中的源操作数指针
    DI 存储器指针、串指令中的目的操作数指针

    寄存器ESI、EDI称为变址寄存器(Index Register),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。
    变址寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。
    它们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特殊的功能。

    ESI/EDI分别叫做"源/目标索引寄存器"(source/destination index),因为在很多字符串操作指令中,DS:ESI指向源串,而ES:EDI指向目标串。

    --------------------------------------------------
    3、指针寄存器

    寄存器EBP、ESP称为指针寄存器(PointerRegister),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。
    指针寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。

    它们主要用于访问堆栈内的存储单元,并且规定:
    EBP为基指针(Base Pointer)寄存器,用它可直接存取堆栈中的数据;(另一处看到的理解:EBP保存调用者的EBP,然后EBP指向此时的栈顶)
    ESP为堆栈指针(Stack Pointer)寄存器,用它只可访问栈顶。

    --------------------------------------------------
    4、段寄存器

    CS——代码段寄存器(CodeSegmentRegister),其值为代码段的段值;
    DS——数据段寄存器(DataSegmentRegister),其值为数据段的段值;
    SS——堆栈段寄存器(StackSegmentRegister),其值为堆栈段的段值;
    ES——附加段寄存器(ExtraSegmentRegister),其值为附加数据段的段值;
    FS——附加段寄存器(ExtraSegmentRegister),其值为附加数据段的段值(32位CPU新增);
    GS——附加段寄存器(ExtraSegmentRegister),其值为附加数据段的段值(32位CPU新增)。

    在16位CPU系统中,它只有4个段寄存器,所以,程序在任何时刻至多有4个正在使用的段可直接访问;在32位微机系统中,它有6个段寄存器,所以,在此环境下开发的程序最多可同时访问6个段。

    32位CPU有两个不同的工作方式:实方式和保护方式。在每种方式下,段寄存器的作用是不同的。有关规定简单描述如下:
    实方式:
    前4个段寄存器CS、DS、ES和SS与先前CPU中的所对应的段寄存器的含义完全一致,内存单元的逻辑地址仍为“段值:偏移量”的形式。为访问某内存段内的数据,必须使用该段寄存器和存储单元的偏移量。
    保护方式:
    在此方式下,情况要复杂得多,装入段寄存器的不再是段值,而是称为“选择子”(Selector)的某个值。
    --------------------------------------------------
    5、指令指针寄存器

    指令指针EIP、IP(InstructionPointer)是存放下次将要执行的指令在代码段的偏移量。在具有预取指令功能的系统中,下次要执行的指令通常已被预取到指令队列中,除非发生转移情况。所以,在理解它们的功能时,不考虑存在指令队列的情况。(另一处看到的理解:EIP 返回本次调用后,下一条指令的地址。)
    在实方式下,由于每个段的最大范围为64K,所以,EIP中的高16位肯定都为0,此时,相当于只用其低16位的IP来反映程序中指令的执行次序。

    --------------------------------------------------
    6、标志寄存器

    一、运算结果标志位
    1、进位标志CF(CarryFlag)
    进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。
    使用该标志位的情况有:多字(字节)数的加减运算,无符号数的大小比较运算,移位操作,字(字节)之间移位,专门改变CF值的指令等。
    2、奇偶标志PF(ParityFlag)
    奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。
    利用PF可进行奇偶校验检查,或产生奇偶校验位。在数据传送过程中,为了提供传送的可靠性,如果采用奇偶校验的方法,就可使用该标志位。
    3、辅助进位标志AF(AuxiliaryCarryFlag)
    在发生下列情况时,辅助进位标志AF的值被置为1,否则其值为0:
    (1)、在字操作时,发生低字节向高字节进位或借位时;
    (2)、在字节操作时,发生低4位向高4位进位或借位时。
    对以上6个运算结果标志位,在一般编程情况下,标志位CF、ZF、SF和OF的使用频率较高,而标志位PF和AF的使用频率较低。
    4、零标志ZF(ZeroFlag)
    零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。
    5、符号标志SF(SignFlag)
    符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。
    6、溢出标志OF(OverflowFlag)
    溢出标志OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。“溢出”和“进位”是两个不同含义的概念,不要混淆。如果不太清楚的话,请查阅《计算机组成原理》课程中的有关章节。

    参考:http://blog.csdn.net/trochiluses/article/details/9105353

  • 相关阅读:
    匹配@之前面的部分
    把一个数字的字符串转换为千分符的标识方式?
    下标重置
    linux的time命令

    常用正则
    正则
    PHP 菠菜木马代码
    PHP 木马代码,
    一句话的木马
  • 原文地址:https://www.cnblogs.com/findumars/p/4121962.html
Copyright © 2011-2022 走看看