zoukankan      html  css  js  c++  java
  • Building PySide on Microsoft Windows

    Prerequisites

    NOTE: Be sure that git.exe and cmake.exe are all in your PATH.

    Build

    • Open “Visual Studio Command Prompt”: [Start Menu]->Programs->Microsoft Visual C++ 2008 Express Edition->Visual Studio Tools
    • Get build scripts from repository http://qt.gitorious.org/pyside/packaging and go to folder “c: epositoriespackagingsetuptools”. The script can automatically download the sources, compile them, and create the installer, all in one step.
    • Run the build.py script (it must be run from “Visual Studio Command Prompt”):

    To build the latest stable binaries for Python 2.7 and Qt 4.7.3, run the script with parameters:

    1.   c: epositoriespackagingsetuptools>c:Python27python.exe build.py -d -q c:Qt4.7.3inqmake.exe
    2.  

    To build the latest development binaries:

    1.   c: epositoriespackagingsetuptools>c:Python27python.exe build.py -d -m dev -q c:Qt4.7.3inqmake.exe
    2.  

    All build.py parameters:

    1.    -p <package_version> Specify package version. Default is latest stable version (1.0.4)
    2.    -d                   Download latest sources from git repository
    3.    -m <pyside_version>  Specify what version of modules to download from git repository:
    4.                          'dev' (master tag) or 'stable' (1.0.4 tag). Default is 'stable'.
    5.    -q <qmake_path>      Locate qmake
    6.    -e                   Check the environment
    7.    -b                   Specify what module to build
    8.    -o                   Create a distribution package only using existing binaries
    9.    
    • After the successful build, the final binary distribution can be found in sub-folder “dist”:
      1.   c: epositoriespackagingsetuptoolsdistPySide-1.0.4qt473.win32-py2.7.exe
      2.  

    Categories:

    http://www.cppblog.com/lauer3912/archive/2012/01/14/164187.html

  • 相关阅读:
    Caffe学习系列(16):caffe的整体流程
    caffe_windows安装
    r-cnn学习系列(三):从r-cnn到faster r-cnn
    Spatial pyramid pooling (SPP)-net (空间金字塔池化)笔记(转)
    r-cnn学习(二)
    r-cnn学习(一)
    Caffe学习系列(13):对训练好的模型进行fine-tune
    注解
    MATLAB实现回归分析
    MATLAB进行假设检验
  • 原文地址:https://www.cnblogs.com/findumars/p/6361977.html
Copyright © 2011-2022 走看看