zoukankan      html  css  js  c++  java
  • ROS naviagtion analysis: costmap_2d--ObstacleLayer

    博客转载自:https://blog.csdn.net/u013158492/article/details/50493676

    构造函数

     ObstacleLayer()
      {
        costmap_ = NULL;  // this is the unsigned char* member of parent class Costmap2D.这里指明了costmap_指针保存了Obstacle这一层的地图数据
      }
    

    对于ObstacleLater,首先分析其需要实现的Layer层的方法:

      virtual void onInitialize();
      virtual void updateBounds(double robot_x, double robot_y, double robot_yaw, double* min_x, double* min_y,double* max_x, double* max_y);
      virtual void updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j);
    
      virtual void activate();
      virtual void deactivate();
      virtual void reset();
    

    函数 onInitialize();: 
    首先获取参数设定的值,然后新建observation buffer

       // create an observation buffer
    observation_buffers_.push_back(boost::shared_ptr < ObservationBuffer>
     (new ObservationBuffer(topic, observation_keep_time, expected_update_rate, min_obstacle_height,max_obstacle_height, obstacle_range, raytrace_range, *tf_, global_frame_,sensor_frame, transform_tolerance)));
    
        // check if we'll add this buffer to our marking observation buffers
        if (marking)
          marking_buffers_.push_back(observation_buffers_.back());
    
        // check if we'll also add this buffer to our clearing observation buffers
        if (clearing)
          clearing_buffers_.push_back(observation_buffers_.back());
    

    然后分别对不同的sensor类型如LaserScan PointCloud PointCloud2,注册不同的回调函数。这里选LaserScan 分析其回调函数:

    void ObstacleLayer::laserScanCallback(const sensor_msgs::LaserScanConstPtr& message,
                                          const boost::shared_ptr<ObservationBuffer>& buffer)
    {
      // project the laser into a point cloud
      sensor_msgs::PointCloud2 cloud;
      cloud.header = message->header;
    
      // project the scan into a point cloud
      try
      {
        projector_.transformLaserScanToPointCloud(message->header.frame_id, *message, cloud, *tf_);
      }
      catch (tf::TransformException &ex)
      {
        ROS_WARN("High fidelity enabled, but TF returned a transform exception to frame %s: %s", global_frame_.c_str(),
                 ex.what());
        projector_.projectLaser(*message, cloud);
      }
    
      // buffer the point cloud
      buffer->lock();
      buffer->bufferCloud(cloud);
      buffer->unlock();
    }
    

    其中buffer->bufferCloud(cloud)实际上是sensor_msgs::PointCloud2 >>>pcl::PCLPointCloud2 >>> pcl::PointCloud < pcl::PointXYZ > ; 然后才调用void ObservationBuffer::bufferCloud(const pcl::PointCloud<pcl::PointXYZ>& cloud)

    void ObservationBuffer::bufferCloud(const pcl::PointCloud<pcl::PointXYZ>& cloud)
    {
      Stamped < tf::Vector3 > global_origin;
    
      // create a new observation on the list to be populated
      observation_list_.push_front(Observation());
    
      // check whether the origin frame has been set explicitly or whether we should get it from the cloud
      string origin_frame = sensor_frame_ == "" ? cloud.header.frame_id : sensor_frame_;
    
      try
      {
        // given these observations come from sensors... we'll need to store the origin pt of the sensor
        Stamped < tf::Vector3 > local_origin(tf::Vector3(0, 0, 0),
                                pcl_conversions::fromPCL(cloud.header).stamp, origin_frame);
        tf_.waitForTransform(global_frame_, local_origin.frame_id_, local_origin.stamp_, ros::Duration(0.5));
        tf_.transformPoint(global_frame_, local_origin, global_origin);
        observation_list_.front().origin_.x = global_origin.getX();
        observation_list_.front().origin_.y = global_origin.getY();
        observation_list_.front().origin_.z = global_origin.getZ();
    
        // make sure to pass on the raytrace/obstacle range of the observation buffer to the observations
        observation_list_.front().raytrace_range_ = raytrace_range_;
        observation_list_.front().obstacle_range_ = obstacle_range_;
    
        pcl::PointCloud < pcl::PointXYZ > global_frame_cloud;
    
        // transform the point cloud
        pcl_ros::transformPointCloud(global_frame_, cloud, global_frame_cloud, tf_);
        global_frame_cloud.header.stamp = cloud.header.stamp;
    //上面的操作都是针对 observation_list_.front()的一些meta数据作赋值
    下面的操作是对(observation_list_.front().cloud_)作赋值操作,
        // now we need to remove observations from the cloud that are below or above our height thresholds
        pcl::PointCloud < pcl::PointXYZ > &observation_cloud = *(observation_list_.front().cloud_);
        unsigned int cloud_size = global_frame_cloud.points.size();
        observation_cloud.points.resize(cloud_size);
        unsigned int point_count = 0;
    
        // copy over the points that are within our height bounds
        for (unsigned int i = 0; i < cloud_size; ++i)
        {
          if (global_frame_cloud.points[i].z <= max_obstacle_height_
              && global_frame_cloud.points[i].z >= min_obstacle_height_)
          {
            observation_cloud.points[point_count++] = global_frame_cloud.points[i];
          }
        }
    
        // resize the cloud for the number of legal points
        observation_cloud.points.resize(point_count);
        observation_cloud.header.stamp = cloud.header.stamp;
        observation_cloud.header.frame_id = global_frame_cloud.header.frame_id;
      }
      catch (TransformException& ex)
      {
        // if an exception occurs, we need to remove the empty observation from the list
        observation_list_.pop_front();
        ROS_ERROR("TF Exception that should never happen for sensor frame: %s, cloud frame: %s, %s", sensor_frame_.c_str(),
                  cloud.header.frame_id.c_str(), ex.what());
        return;
      }
    
      // if the update was successful, we want to update the last updated time
      last_updated_ = ros::Time::now();
    
      // we'll also remove any stale observations from the list
      //这个操作会将timestamp较早的点都移除出observation_list_
      purgeStaleObservations();
    }
    

    以下重点分析updateBounds

    void ObstacleLayer::updateBounds(double robot_x, double robot_y, double robot_yaw, double* min_x,double* min_y, double* max_x, double* max_y)
    {
      if (rolling_window_)
        updateOrigin(robot_x - getSizeInMetersX() / 2, robot_y - getSizeInMetersY() / 2);
      if (!enabled_)
        return;
      useExtraBounds(min_x, min_y, max_x, max_y);
    
      bool current = true;
      std::vector<Observation> observations, clearing_observations;
    
      // get the marking observations 
     current = current && getMarkingObservations(observations);
      // get the clearing observations
     current = current &&getClearingObservations(clearing_observations);
    
      // update the global current status
      current_ = current;
    
      // raytrace freespace
      for (unsigned int i = 0; i < clearing_observations.size(); ++i)
      {
        raytraceFreespace(clearing_observations[i], min_x, min_y, max_x, max_y);//首先清理出传感器到被测物之间的区域,标记为FREE_SPACE
      }
    
      // place the new obstacles into a priority queue... each with a priority of zero to begin with
      for (std::vector<Observation>::const_iterator it = observations.begin(); it != observations.end(); ++it)
      {
        const Observation& obs = *it;
        const pcl::PointCloud<pcl::PointXYZ>& cloud = *(obs.cloud_);
        double sq_obstacle_range = obs.obstacle_range_ * obs.obstacle_range_;
        for (unsigned int i = 0; i < cloud.points.size(); ++i)
        {
          double px = cloud.points[i].x, py = cloud.points[i].y, pz = cloud.points[i].z;
          // if the obstacle is too high or too far away from the robot we won't add it
          if (pz > max_obstacle_height_)
          {
            ROS_DEBUG("The point is too high");
            continue;
          }
          // compute the squared distance from the hitpoint to the pointcloud's origin
    double sq_dist = 
    (px - obs.origin_.x) * (px - obs.origin_.x) + (py - obs.origin_.y) * (py - obs.origin_.y)
     + (pz - obs.origin_.z) * (pz - obs.origin_.z);
    
          // if the point is far enough away... we won't consider it
          if (sq_dist >= sq_obstacle_range)
          {
            ROS_DEBUG("The point is too far away");
            continue;
          }
          // now we need to compute the map coordinates for the observation
          unsigned int mx, my;
          if (!worldToMap(px, py, mx, my))
          {
            ROS_DEBUG("Computing map coords failed");
            continue;
          }
          unsigned int index = getIndex(mx, my);
          costmap_[index] = LETHAL_OBSTACLE;
          touch(px, py, min_x, min_y, max_x, max_y);
        }
      }
    
      updateFootprint(robot_x, robot_y, robot_yaw, min_x, min_y, max_x, max_y);
    }
    

    函数raytraceFreespace: 
    会首先处理测量值越界的问题,然后调用

    MarkCell marker(costmap_, FREE_SPACE);
        // and finally... we can execute our trace to clear obstacles along that line
        raytraceLine(marker, x0, y0, x1, y1, cell_raytrace_range);
        updateRaytraceBounds(ox, oy, wx, wy, clearing_observation.raytrace_range_, min_x, min_y, max_x, max_y);
    

    最终raytraceLine(marker, x0, y0, x1, y1, cell_raytrace_range); 会将所有在(x0,y0) -> (x1,y1)之间的所有cell标记为FREE_SPACE。而updateRaytraceBounds 会根据测量的距离,更新扩张(min_x, min_y, max_x, max_y)。 
    updateBounds 在根据测量数据完成clear 操作之后,就开始了mark 操作,对每个测量到的点,标记为obstacle :

    double px = cloud.points[i].x, py = cloud.points[i].y, pz = cloud.points[i].z;
    
          // if the obstacle is too high or too far away from the robot we won't add it
          if (pz > max_obstacle_height_)
          {
            ROS_DEBUG("The point is too high");
            continue;
          }
    
          // compute the squared distance from the hitpoint to the pointcloud's origin
          double sq_dist = (px - obs.origin_.x) * (px - obs.origin_.x) + (py - obs.origin_.y) * (py - obs.origin_.y)
              + (pz - obs.origin_.z) * (pz - obs.origin_.z);
    
          // if the point is far enough away... we won't consider it
          if (sq_dist >= sq_obstacle_range)
          {
            ROS_DEBUG("The point is too far away");
            continue;
          }
    
          // now we need to compute the map coordinates for the observation
          unsigned int mx, my;
          if (!worldToMap(px, py, mx, my))
          {
            ROS_DEBUG("Computing map coords failed");
            continue;
          }
    
          unsigned int index = getIndex(mx, my);
          costmap_[index] = LETHAL_OBSTACLE;
          touch(px, py, min_x, min_y, max_x, max_y);
        }
    

    函数 updateFootprint

    void ObstacleLayer::updateFootprint(double robot_x, double robot_y, double robot_yaw, double* min_x, double* min_y,
                                        double* max_x, double* max_y)
    {
        if (!footprint_clearing_enabled_) return;
        transformFootprint(robot_x, robot_y, robot_yaw, getFootprint(), transformed_footprint_);//这里获得了在当前机器人位姿(robot_x, robot_y, robot_yaw)条件下,机器人轮廓点在global坐标系下的值
    
        for (unsigned int i = 0; i < transformed_footprint_.size(); i++)
        {
          touch(transformed_footprint_[i].x, transformed_footprint_[i].y, min_x, min_y, max_x, max_y);//再次保留或者扩张Bounds
        }
    }
    

    函数 updateCosts

    void ObstacleLayer::updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j)
    {
      if (!enabled_)
        return;
    
      if (footprint_clearing_enabled_)
      {
        setConvexPolygonCost(transformed_footprint_, costmap_2d::FREE_SPACE);//设置机器人轮廓所在区域为FREE_SPACE
      }
    
      switch (combination_method_)
      {
        case 0:  // Overwrite调用的CostmapLayer提供的方法
          updateWithOverwrite(master_grid, min_i, min_j, max_i, max_j);
          break;
        case 1:  // Maximum
          updateWithMax(master_grid, min_i, min_j, max_i, max_j);
          break;
        default:  // Nothing
          break;
      }
    }
    

    ObstacleLayer 主要内容就是这些~~~接下来是InflationLayer

  • 相关阅读:
    asp.net AD 域验证
    ASP.NET身份验证
    .Net默认IE版本号的两种方式
    (转)移动端自适应方案
    (转)手机web——自适应网页设计(html/css控制)
    (转)优雅降级和渐进增强的区别
    (转)hasLayout与BFC的触发条件
    (转)js中几种实用的跨域方法原理详解
    (转)js实现继承的5种方式
    (转)js 判断各种数据类型
  • 原文地址:https://www.cnblogs.com/flyinggod/p/9083484.html
Copyright © 2011-2022 走看看