博客转载自:https://blog.csdn.net/u013158492/article/details/50493676
构造函数
ObstacleLayer() { costmap_ = NULL; // this is the unsigned char* member of parent class Costmap2D.这里指明了costmap_指针保存了Obstacle这一层的地图数据 }
对于ObstacleLater,首先分析其需要实现的Layer层的方法:
virtual void onInitialize(); virtual void updateBounds(double robot_x, double robot_y, double robot_yaw, double* min_x, double* min_y,double* max_x, double* max_y); virtual void updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j); virtual void activate(); virtual void deactivate(); virtual void reset();
函数 onInitialize();
:
首先获取参数设定的值,然后新建observation buffer
// create an observation buffer observation_buffers_.push_back(boost::shared_ptr < ObservationBuffer> (new ObservationBuffer(topic, observation_keep_time, expected_update_rate, min_obstacle_height,max_obstacle_height, obstacle_range, raytrace_range, *tf_, global_frame_,sensor_frame, transform_tolerance))); // check if we'll add this buffer to our marking observation buffers if (marking) marking_buffers_.push_back(observation_buffers_.back()); // check if we'll also add this buffer to our clearing observation buffers if (clearing) clearing_buffers_.push_back(observation_buffers_.back());
然后分别对不同的sensor类型如LaserScan PointCloud PointCloud2
,注册不同的回调函数。这里选LaserScan
分析其回调函数:
void ObstacleLayer::laserScanCallback(const sensor_msgs::LaserScanConstPtr& message, const boost::shared_ptr<ObservationBuffer>& buffer) { // project the laser into a point cloud sensor_msgs::PointCloud2 cloud; cloud.header = message->header; // project the scan into a point cloud try { projector_.transformLaserScanToPointCloud(message->header.frame_id, *message, cloud, *tf_); } catch (tf::TransformException &ex) { ROS_WARN("High fidelity enabled, but TF returned a transform exception to frame %s: %s", global_frame_.c_str(), ex.what()); projector_.projectLaser(*message, cloud); } // buffer the point cloud buffer->lock(); buffer->bufferCloud(cloud); buffer->unlock(); }
其中buffer->bufferCloud(cloud)
实际上是sensor_msgs::PointCloud2
>>>pcl::PCLPointCloud2 >>> pcl::PointCloud < pcl::PointXYZ > ;
然后才调用void ObservationBuffer::bufferCloud(const pcl::PointCloud<pcl::PointXYZ>& cloud)
void ObservationBuffer::bufferCloud(const pcl::PointCloud<pcl::PointXYZ>& cloud) { Stamped < tf::Vector3 > global_origin; // create a new observation on the list to be populated observation_list_.push_front(Observation()); // check whether the origin frame has been set explicitly or whether we should get it from the cloud string origin_frame = sensor_frame_ == "" ? cloud.header.frame_id : sensor_frame_; try { // given these observations come from sensors... we'll need to store the origin pt of the sensor Stamped < tf::Vector3 > local_origin(tf::Vector3(0, 0, 0), pcl_conversions::fromPCL(cloud.header).stamp, origin_frame); tf_.waitForTransform(global_frame_, local_origin.frame_id_, local_origin.stamp_, ros::Duration(0.5)); tf_.transformPoint(global_frame_, local_origin, global_origin); observation_list_.front().origin_.x = global_origin.getX(); observation_list_.front().origin_.y = global_origin.getY(); observation_list_.front().origin_.z = global_origin.getZ(); // make sure to pass on the raytrace/obstacle range of the observation buffer to the observations observation_list_.front().raytrace_range_ = raytrace_range_; observation_list_.front().obstacle_range_ = obstacle_range_; pcl::PointCloud < pcl::PointXYZ > global_frame_cloud; // transform the point cloud pcl_ros::transformPointCloud(global_frame_, cloud, global_frame_cloud, tf_); global_frame_cloud.header.stamp = cloud.header.stamp; //上面的操作都是针对 observation_list_.front()的一些meta数据作赋值 下面的操作是对(observation_list_.front().cloud_)作赋值操作, // now we need to remove observations from the cloud that are below or above our height thresholds pcl::PointCloud < pcl::PointXYZ > &observation_cloud = *(observation_list_.front().cloud_); unsigned int cloud_size = global_frame_cloud.points.size(); observation_cloud.points.resize(cloud_size); unsigned int point_count = 0; // copy over the points that are within our height bounds for (unsigned int i = 0; i < cloud_size; ++i) { if (global_frame_cloud.points[i].z <= max_obstacle_height_ && global_frame_cloud.points[i].z >= min_obstacle_height_) { observation_cloud.points[point_count++] = global_frame_cloud.points[i]; } } // resize the cloud for the number of legal points observation_cloud.points.resize(point_count); observation_cloud.header.stamp = cloud.header.stamp; observation_cloud.header.frame_id = global_frame_cloud.header.frame_id; } catch (TransformException& ex) { // if an exception occurs, we need to remove the empty observation from the list observation_list_.pop_front(); ROS_ERROR("TF Exception that should never happen for sensor frame: %s, cloud frame: %s, %s", sensor_frame_.c_str(), cloud.header.frame_id.c_str(), ex.what()); return; } // if the update was successful, we want to update the last updated time last_updated_ = ros::Time::now(); // we'll also remove any stale observations from the list //这个操作会将timestamp较早的点都移除出observation_list_ purgeStaleObservations(); }
以下重点分析updateBounds
:
void ObstacleLayer::updateBounds(double robot_x, double robot_y, double robot_yaw, double* min_x,double* min_y, double* max_x, double* max_y) { if (rolling_window_) updateOrigin(robot_x - getSizeInMetersX() / 2, robot_y - getSizeInMetersY() / 2); if (!enabled_) return; useExtraBounds(min_x, min_y, max_x, max_y); bool current = true; std::vector<Observation> observations, clearing_observations; // get the marking observations current = current && getMarkingObservations(observations); // get the clearing observations current = current &&getClearingObservations(clearing_observations); // update the global current status current_ = current; // raytrace freespace for (unsigned int i = 0; i < clearing_observations.size(); ++i) { raytraceFreespace(clearing_observations[i], min_x, min_y, max_x, max_y);//首先清理出传感器到被测物之间的区域,标记为FREE_SPACE } // place the new obstacles into a priority queue... each with a priority of zero to begin with for (std::vector<Observation>::const_iterator it = observations.begin(); it != observations.end(); ++it) { const Observation& obs = *it; const pcl::PointCloud<pcl::PointXYZ>& cloud = *(obs.cloud_); double sq_obstacle_range = obs.obstacle_range_ * obs.obstacle_range_; for (unsigned int i = 0; i < cloud.points.size(); ++i) { double px = cloud.points[i].x, py = cloud.points[i].y, pz = cloud.points[i].z; // if the obstacle is too high or too far away from the robot we won't add it if (pz > max_obstacle_height_) { ROS_DEBUG("The point is too high"); continue; } // compute the squared distance from the hitpoint to the pointcloud's origin double sq_dist = (px - obs.origin_.x) * (px - obs.origin_.x) + (py - obs.origin_.y) * (py - obs.origin_.y) + (pz - obs.origin_.z) * (pz - obs.origin_.z); // if the point is far enough away... we won't consider it if (sq_dist >= sq_obstacle_range) { ROS_DEBUG("The point is too far away"); continue; } // now we need to compute the map coordinates for the observation unsigned int mx, my; if (!worldToMap(px, py, mx, my)) { ROS_DEBUG("Computing map coords failed"); continue; } unsigned int index = getIndex(mx, my); costmap_[index] = LETHAL_OBSTACLE; touch(px, py, min_x, min_y, max_x, max_y); } } updateFootprint(robot_x, robot_y, robot_yaw, min_x, min_y, max_x, max_y); }
函数raytraceFreespace
:
会首先处理测量值越界的问题,然后调用
MarkCell marker(costmap_, FREE_SPACE); // and finally... we can execute our trace to clear obstacles along that line raytraceLine(marker, x0, y0, x1, y1, cell_raytrace_range); updateRaytraceBounds(ox, oy, wx, wy, clearing_observation.raytrace_range_, min_x, min_y, max_x, max_y);
最终raytraceLine(marker, x0, y0, x1, y1, cell_raytrace_range);
会将所有在(x0,y0) -> (x1,y1)之间的所有cell标记为FREE_SPACE。而updateRaytraceBounds
会根据测量的距离,更新扩张(min_x, min_y, max_x, max_y)
。 updateBounds
在根据测量数据完成clear
操作之后,就开始了mark
操作,对每个测量到的点,标记为obstacle
:
double px = cloud.points[i].x, py = cloud.points[i].y, pz = cloud.points[i].z; // if the obstacle is too high or too far away from the robot we won't add it if (pz > max_obstacle_height_) { ROS_DEBUG("The point is too high"); continue; } // compute the squared distance from the hitpoint to the pointcloud's origin double sq_dist = (px - obs.origin_.x) * (px - obs.origin_.x) + (py - obs.origin_.y) * (py - obs.origin_.y) + (pz - obs.origin_.z) * (pz - obs.origin_.z); // if the point is far enough away... we won't consider it if (sq_dist >= sq_obstacle_range) { ROS_DEBUG("The point is too far away"); continue; } // now we need to compute the map coordinates for the observation unsigned int mx, my; if (!worldToMap(px, py, mx, my)) { ROS_DEBUG("Computing map coords failed"); continue; } unsigned int index = getIndex(mx, my); costmap_[index] = LETHAL_OBSTACLE; touch(px, py, min_x, min_y, max_x, max_y); }
函数 updateFootprint
:
void ObstacleLayer::updateFootprint(double robot_x, double robot_y, double robot_yaw, double* min_x, double* min_y, double* max_x, double* max_y) { if (!footprint_clearing_enabled_) return; transformFootprint(robot_x, robot_y, robot_yaw, getFootprint(), transformed_footprint_);//这里获得了在当前机器人位姿(robot_x, robot_y, robot_yaw)条件下,机器人轮廓点在global坐标系下的值 for (unsigned int i = 0; i < transformed_footprint_.size(); i++) { touch(transformed_footprint_[i].x, transformed_footprint_[i].y, min_x, min_y, max_x, max_y);//再次保留或者扩张Bounds } }
函数 updateCosts
:
void ObstacleLayer::updateCosts(costmap_2d::Costmap2D& master_grid, int min_i, int min_j, int max_i, int max_j) { if (!enabled_) return; if (footprint_clearing_enabled_) { setConvexPolygonCost(transformed_footprint_, costmap_2d::FREE_SPACE);//设置机器人轮廓所在区域为FREE_SPACE } switch (combination_method_) { case 0: // Overwrite调用的CostmapLayer提供的方法 updateWithOverwrite(master_grid, min_i, min_j, max_i, max_j); break; case 1: // Maximum updateWithMax(master_grid, min_i, min_j, max_i, max_j); break; default: // Nothing break; } }
ObstacleLayer
主要内容就是这些~~~接下来是InflationLayer