Wooden Sticks
Problem Description
There is a pile of n wooden sticks. The length and weight of each stick are known in advance. The sticks are to be processed by a woodworking machine in one by one fashion. It needs some time, called setup time, for the machine to prepare processing a stick.
The setup times are associated with cleaning operations and changing tools and shapes in the machine. The setup times of the woodworking machine are given as follows:
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).
(a) The setup time for the first wooden stick is 1 minute.
(b) Right after processing a stick of length l and weight w , the machine will need no setup time for a stick of length l' and weight w' if l<=l' and w<=w'. Otherwise, it will need 1 minute for setup.
You are to find the minimum setup time to process a given pile of n wooden sticks. For example, if you have five sticks whose pairs of length and weight are (4,9), (5,2), (2,1), (3,5), and (1,4), then the minimum setup time should be 2 minutes since there is a sequence of pairs (1,4), (3,5), (4,9), (2,1), (5,2).
Input
The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case consists of two lines: The first line has an integer n , 1<=n<=5000, that represents the number of wooden sticks in the test case,
and the second line contains n 2 positive integers l1, w1, l2, w2, ..., ln, wn, each of magnitude at most 10000 , where li and wi are the length and weight of the i th wooden stick, respectively. The 2n integers are delimited by one or more spaces.
Output
The output should contain the minimum setup time in minutes, one per line.
Sample Input
3 5 4 9 5 2 2 1 3 5 1 4 3 2 2 1 1 2 2 3 1 3 2 2 3 1
Sample Output
2 1 3
Source
题意:给你 N 个木棍,每根木棍都有一个长度 l 和一定重量 w 。
机器每对一根进行操作需要一分钟的时间 ,但是如果当前进行操作的木棍的长度和重量都不小于前一根,
那么这根木棍就不需要加时间。
算法:贪心 + 标记。
思路:先按照长度由小到大排序,如果长度一样,则按照重量由小到大排序。
依次操作每根木棍,同时标记已经操作。
操作当前木棍时,同时检查是否可以使它后面的木棍直接操作而且不用加时间,如果可以,则直接操作并且记
已操作。
F | Accepted | 328 KB | 15 ms | C++ | 1004 B | 2013-04-20 19:58:06 |
Accepted | 1051 | 15MS | 328K | 1059 B | C++ | free斩 |
#include<stdio.h> #include<algorithm> using namespace std; const int maxn = 10000+10; struct Node{ int l; int w; bool vis; //重要 }node[maxn]; bool cmp(Node a, Node b) { if(a.l != b.l) return a.l < b.l; //先按照长度排序 else return a.w < b.w; //再按照重量排序 } int main() { int T; int n; scanf("%d", &T); while(T--) { scanf("%d", &n); for(int i = 0; i < n; i++) { scanf("%d%d", &node[i].l, &node[i].w); node[i].vis = false; //每根木棍均未操作 } sort(node, node+n, cmp); int ans = 0; for(int i = 0; i < n; i++) { if(node[i].vis) continue; //如果已经操作过,直接跳出 ans++; // 前面没有可以使它直接操作的木棍 node[i].vis = true; int weight = node[i].w; //由于长度已排序,所以只用记录重量 for(int j = i+1; j < n; j++) { if(!node[j].vis && node[j].w >= weight) //如果满足不用+时间 { node[j].vis = true; //直接操作 weight = node[j].w; //同时更新下一根可以操作的 w 界限 } } } printf("%d\n", ans); } return 0; }
误区:1.按照题目中说的序列排序,遇到 l 或者 w 比前面小的,则时间 +1,感觉思路应该是对的,估计是第二排 序时换来换去,哪儿错了吧。
2.按照并查集,把满足情况的放到一个连通分量中,再求有几个根。
想法很美好,错的不听紧!!!
下面贴个误区一的代码,希望路过的,有想法的给我改下。。。。
#include<cstdio> #include<algorithm> #include<iostream> using namespace std; struct Node { int w,l; }node[5005]; bool cmp(Node a, Node b) { if(a.w != b.w) return a.w < b.w; else return a.l < b.l; } int main() { int T; int n; scanf("%d", &T); { while(T--) { scanf("%d", &n); for(int i = 0; i < n; i++) { scanf("%d%d", &node[i].w, &node[i].l); } sort(node, node+n, cmp); Node now = node[0]; for(int i = 1; i < n; i++) { if(node[i].l < now.l) { for(int j = i+1; j < n; j++) { if(node[j].l < now.l && node[j].l >= node[j-1].l) { now = node[j-1]; break; } else { Node temp = node[j-1]; node[j-1] = node[j]; node[j] = temp; } } } } /*for(int i = 0; i < n; i++) { printf("%d %d\n", node[i].w, node[i].l); }*/ int ans = 1; for(int i = 1; i < n; i++) { if(node[i].w < node[i-1].w) ans++; else if(node[i].l < node[i-1].l) ans++; } printf("%d\n", ans); } } return 0; }