zoukankan      html  css  js  c++  java
  • CQOI 2018 解锁屏幕

    洛谷 P4460 [CQOI2018]解锁屏幕

    洛谷传送门

    题目背景

    使用过Android 手机的同学一定对手势解锁屏幕不陌生。Android 的解锁屏幕由3X3 个点组成,手指在屏幕上画一条线,将其中一些点连接起来,即可构成一个解锁图案。如下面三个例子所示:

    img img img

    题目描述

    画线时还需要遵循一些规则:

    1. 连接的点数不能少于4 个。也就是说只连接两个点或者三个点会提示错误。
    2. 两个点之间的连线不能弯曲。
    3. 每个点只能“使用”一次,不可重复。这里的“使用”是指手指划过一个点,该点变绿。
    4. 两个点之间的连线不能“跨过”另一个点,除非那个点之前已经被“使用”过了。

    对于最后一条规则,参见下图的解释。左边两幅图违反了该规则; 而右边两幅图(分别为2->4-1-3-6 和6->5-4->1->9-2) 则没有违反规则,因为在“跨过”点时,点已经被“使用”过了。

    img

    现在工程师希望改进解锁屏幕,增减点的数目,并移动点的位置,不再是一个九宫格形状,但保持上述画线的规则不变。请计算新的解锁屏幕上,一共有多少满足规则的画线方案。

    输入格式

    输入文件第一行,为一个整数n,表示点的数目。

    接下来n 行,每行两个空格分开的整数x_ix**i 和y_iy**i,表示每个点的坐标。

    输出格式

    输出文件共一行,为题目所求方案数除以100000007 的余数。

    输入输出样例

    输入 #1复制

    输出 #1复制

    输入 #2复制

    输出 #2复制

    说明/提示

    样例#1解释: 设4 个点编号为1到4,方案有1->2->3->4,2->1->3->4,3->2->1->4,2->3->1->4,及其镜像4->3->2->1,3->4->2->1,2->3->4->1,3->2->4->1。

    对于30%的数据,1≤n≤101≤n≤10

    对于100%的数据,-1000≤x_i,y_i≤1000,1≤n<20−1000≤x**i,y**i≤1000,1≤n<20。各点坐标不相同

    题解:

    七哥@littleseven 推荐的题。必须要做

    看到方案数想到递推,然后(1le Nle 20)。所以想到状态压缩。然后七哥让我推状态。我一想,如果开多维的话可能空间会爆,所以考虑只开一维,压成一个(1<<n)的状态,表示每个点是否被连接。

    后来发现没法转移。所以考虑再开一维,于是到处搜索...拿什么做第二维能保证既能转移又不会挂空间呢?

    一看数据范围,只有点数的二十还符合第二点要求,所以就选择这个做状态。苦思冥想看完题解之后,觉得把状态设置成这样最合适:

    (dp[i][j])表示点的选择状况为(i)、选择的点集中终点为(j)时的方案数。

    那么,针对于一个已定的状态(i),它能转移的对象是这个状态中不为1的点。

    举例:

    (dp[10010][2])可以转移到(dp[11010][4],dp[10011][1])等状态。我们在转移的时候判一下这个点可不可以转移即可。(条件是转移前的(j)和转移后的(j)连上的直线上所有的点全部已经被到达过)

    这样的话,我们可以先把两点间的点开(vector)存下,然后进行递推。

    发现只连一个点的方案数是1.这个当初值。

    我们转移的时候记录把当前状态用(st)记录下来,然后再用(k)枚举上一层状态,如果符合条件(即上面的点都被经过了,用(flag)标记判断进行转移就好)

    转移方程是:

    [dp[st][j]=(dp[st][j]+dp[i][k])quad(mod\,\,\,p) ]

    完整代码就是:

    #include<cstdio>
    #include<vector>
    #include<algorithm>
    using namespace std;
    const int mod=1e8+7;
    int n;
    bool flag;
    int dp[1<<20][21];
    struct node
    {
        int x,y;
    }a[21];
    bool cmp(node a,node b)
    {
        if(a.x==b.x)
            return a.y<b.y;
        return a.x<b.x;
    }
    vector<int> vec[21][21];
    bool check(node a,node b,node c)
    {
        return (a.x-b.x)*(b.y-c.y)==(b.x-c.x)*(a.y-b.y)?1:0;
    }
    int lowbit(int x)
    {
        int ret=0;
        while(x)
        {
            x-=(x&(-x));
            ret++;
        }
        return ret;
    }
    int main()
    {
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
            scanf("%d%d",&a[i].x,&a[i].y);
        sort(a+1,a+n+1,cmp);
        for(int i=1;i<=n;i++)
            for(int j=i+1;j<=n;j++)
                for(int k=i+1;k<j;k++)
                    if(check(a[i],a[k],a[j]))
                        vec[i][j].push_back(k);
        for(int i=1;i<=n;i++)
            dp[1<<(i-1)][i]=1;
        for(int i=0;i<(1<<n);i++)
            for(int j=1;j<=n;j++)
            {
                if((i>>(j-1))&1)
                    continue;
                int st=(i|(1<<(j-1)));
                for(int k=1;k<=n;k++)
                {
                    if(k==j)
                        continue;
                    int xx=min(j,k);
                    int yy=max(j,k);
                    flag=0;
                    for(int t=0;t<vec[xx][yy].size();t++)
                        if(!((i>>(vec[xx][yy][t]-1))&1))
                        {
                            flag=1;
                            break;
                        }
                    if(flag)
                        continue;
                    dp[st][j]=(dp[st][j]+dp[i][k])%mod;
                }
            }
        int ans=0;
        for(int i=0;i<(1<<n);i++)
        {
            if(lowbit(i)<4)
                continue;
            for(int j=1;j<=n;j++)
                ans=(ans+dp[i][j])%mod;
        }
        printf("%d",ans);
        return 0;
    }
    
  • 相关阅读:
    LockSupport的用法及原理
    ReentrantReadWriteLock读写锁详解
    Java的CountDownLatch和CyclicBarrier的理解和区别
    AbstractQueuedSynchronizer超详细原理解析
    走进JVM
    【题解】Hanoi塔问题
    【题解】二的幂次方
    【题解】桐桐的递归函数
    【题解】数的计数
    【题解】极品飞车
  • 原文地址:https://www.cnblogs.com/fusiwei/p/11813111.html
Copyright © 2011-2022 走看看