zoukankan      html  css  js  c++  java
  • 2.深入类和对象

    1.1.鸭子类型和多态

    “当看到一只鸟走起来像鸭子、游泳起来像鸭子、叫起来也像鸭子,那么这只鸟就可以被称为鸭子。”

     我们并不关心对象是什么类型,到底是不是鸭子,只关心行为。

    实例一:

    # 鸭子类型和多态简单实例
    
    class Dog(object):
        def say(self):
            print('a dog')
    
    
    class Cat(object):
        def say(self):
            print('a cat')
    
    class Duck(object):
        def say(self):
            print('a duck')
    
    animal_list = [Dog,Cat,Duck]
    
    for animal in animal_list:
        animal().say()
    
    
    #运行结果
    
    a dog
    a cat
    a duck

     实例二:

    类只要实现了__getitem__方法,它就是可迭代的,并不关心对象的本身,只关心行为,然后就可以当做extend的参数。

    class Company(object):
        def __init__(self, employee_list):
            self.employee = employee_list
    
        def __getitem__(self, item):
            return self.employee[item]
    
    
    company = Company(["11", "22", "33"])
    
    a = ['derek1','derek2']
    
    name_set = set()
    
    name_set.add('tom1')
    name_set.add(('tom2'))
    
    #extend里面的参数介绍
    #def extend(self, iterable):  # real signature unknown; restored from __doc__
        #""" L.extend(iterable) -> None -- extend list by appending elements from the iterable """
    
    
    #extend里面可以添加任何可迭代的参数,给类添加一个魔法函数__getitem__,类就变成可迭代的,所以可以extend进去
    a.extend(company)
    print(a)       #['derek1', 'derek2', '11', '22', '33']
    
    a.extend(name_set)
    print(a)       #['derek1', 'derek2', '11', '22', '33', 'tom2', 'tom1']

    1.2.抽象基类(abc模块)

    抽象基类的作用类似于JAVA中的接口。在接口中定义各种方法,然后继承接口的各种类进行具体方法的实现。抽象基类就是定义各种方法而不做具体实现的类,任何继承自抽象基类的类必须实现这些方法,否则无法实例化

    (1)判断类时候有某种属性

    #判断类是否有某种属性
    
    class Company(object):
        def __init__(self, employee_list):
            self.employee = employee_list
    
        def __len__(self):
            return len(self.employee)
    
    com = Company(["11", "22", "33"])
    
    #hasattr判断类有没有某种属性,方法也是类的属性
    print(hasattr(com,"__len__"))   #True
    
    #虽然用hasattr可以判断,但正确的方式是定义一个抽象基类
    
    #我们在某些情况下希望判定某个对象的类型,可以用抽象基类
    from collections.abc import Sized
    print(isinstance(com,Sized))    #True
    # print(len(com))
    class Sized(metaclass=ABCMeta):
    
        __slots__ = ()
    
        @abstractmethod
        def __len__(self):
            return 0
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is Sized:
                return _check_methods(C, "__len__")
            return NotImplemented
    Sized源码

    (2)abc模块

    简单抽象基类实例

    #模拟一个抽象基类
    
    #写一个抽象基类,它的子类必须要重写抽象基类里面的方法
    import abc
    #定义一个抽象基类
    class CacheBase(metaclass=abc.ABCMeta):
        @abc.abstractclassmethod
        def get(self,key):
            pass
    
        @abc.abstractclassmethod
        def set(self,key,value):
            pass
    
    #子类,必须有抽象基类里面的方法,get和set
    #假入不写set方法会报错
    
    class RedisCache(CacheBase):
        def get(self,key):
            pass
        
        # def set(self,key,value):
        #     pass
    
    redis_cache = RedisCache()
    #模拟一个抽象基类
    
    #写一个抽象基类,它的子类必须要重写抽象基类里面的方法
    import abc
    #定义一个抽象基类
    class CacheBase(metaclass=abc.ABCMeta):
        @abc.abstractclassmethod
        def get(self,key):
            pass
    
        @abc.abstractclassmethod
        def set(self,key,value):
            pass
    
    #子类,必须有抽象基类里面的方法,get和set
    #假入不写set方法会报错
    
    class RedisCache(CacheBase):
        def get(self,key):
            pass
    
        def set(self,key,value):
            pass
    
    redis_cache = RedisCache()
    正确

     

     (3)abc里面所有的抽象基类

    from collections.abc import *

    所有的抽象基类

    # Copyright 2007 Google, Inc. All Rights Reserved.
    # Licensed to PSF under a Contributor Agreement.
    
    """Abstract Base Classes (ABCs) for collections, according to PEP 3119.
    
    Unit tests are in test_collections.
    """
    
    from abc import ABCMeta, abstractmethod
    import sys
    
    __all__ = ["Awaitable", "Coroutine",
               "AsyncIterable", "AsyncIterator", "AsyncGenerator",
               "Hashable", "Iterable", "Iterator", "Generator", "Reversible",
               "Sized", "Container", "Callable", "Collection",
               "Set", "MutableSet",
               "Mapping", "MutableMapping",
               "MappingView", "KeysView", "ItemsView", "ValuesView",
               "Sequence", "MutableSequence",
               "ByteString",
               ]
    
    # This module has been renamed from collections.abc to _collections_abc to
    # speed up interpreter startup. Some of the types such as MutableMapping are
    # required early but collections module imports a lot of other modules.
    # See issue #19218
    __name__ = "collections.abc"
    
    # Private list of types that we want to register with the various ABCs
    # so that they will pass tests like:
    #       it = iter(somebytearray)
    #       assert isinstance(it, Iterable)
    # Note:  in other implementations, these types might not be distinct
    # and they may have their own implementation specific types that
    # are not included on this list.
    bytes_iterator = type(iter(b''))
    bytearray_iterator = type(iter(bytearray()))
    #callable_iterator = ???
    dict_keyiterator = type(iter({}.keys()))
    dict_valueiterator = type(iter({}.values()))
    dict_itemiterator = type(iter({}.items()))
    list_iterator = type(iter([]))
    list_reverseiterator = type(iter(reversed([])))
    range_iterator = type(iter(range(0)))
    longrange_iterator = type(iter(range(1 << 1000)))
    set_iterator = type(iter(set()))
    str_iterator = type(iter(""))
    tuple_iterator = type(iter(()))
    zip_iterator = type(iter(zip()))
    ## views ##
    dict_keys = type({}.keys())
    dict_values = type({}.values())
    dict_items = type({}.items())
    ## misc ##
    mappingproxy = type(type.__dict__)
    generator = type((lambda: (yield))())
    ## coroutine ##
    async def _coro(): pass
    _coro = _coro()
    coroutine = type(_coro)
    _coro.close()  # Prevent ResourceWarning
    del _coro
    ## asynchronous generator ##
    async def _ag(): yield
    _ag = _ag()
    async_generator = type(_ag)
    del _ag
    
    
    ### ONE-TRICK PONIES ###
    
    def _check_methods(C, *methods):
        mro = C.__mro__
        for method in methods:
            for B in mro:
                if method in B.__dict__:
                    if B.__dict__[method] is None:
                        return NotImplemented
                    break
            else:
                return NotImplemented
        return True
    
    class Hashable(metaclass=ABCMeta):
    
        __slots__ = ()
    
        @abstractmethod
        def __hash__(self):
            return 0
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is Hashable:
                return _check_methods(C, "__hash__")
            return NotImplemented
    
    
    class Awaitable(metaclass=ABCMeta):
    
        __slots__ = ()
    
        @abstractmethod
        def __await__(self):
            yield
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is Awaitable:
                return _check_methods(C, "__await__")
            return NotImplemented
    
    
    class Coroutine(Awaitable):
    
        __slots__ = ()
    
        @abstractmethod
        def send(self, value):
            """Send a value into the coroutine.
            Return next yielded value or raise StopIteration.
            """
            raise StopIteration
    
        @abstractmethod
        def throw(self, typ, val=None, tb=None):
            """Raise an exception in the coroutine.
            Return next yielded value or raise StopIteration.
            """
            if val is None:
                if tb is None:
                    raise typ
                val = typ()
            if tb is not None:
                val = val.with_traceback(tb)
            raise val
    
        def close(self):
            """Raise GeneratorExit inside coroutine.
            """
            try:
                self.throw(GeneratorExit)
            except (GeneratorExit, StopIteration):
                pass
            else:
                raise RuntimeError("coroutine ignored GeneratorExit")
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is Coroutine:
                return _check_methods(C, '__await__', 'send', 'throw', 'close')
            return NotImplemented
    
    
    Coroutine.register(coroutine)
    
    
    class AsyncIterable(metaclass=ABCMeta):
    
        __slots__ = ()
    
        @abstractmethod
        def __aiter__(self):
            return AsyncIterator()
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is AsyncIterable:
                return _check_methods(C, "__aiter__")
            return NotImplemented
    
    
    class AsyncIterator(AsyncIterable):
    
        __slots__ = ()
    
        @abstractmethod
        async def __anext__(self):
            """Return the next item or raise StopAsyncIteration when exhausted."""
            raise StopAsyncIteration
    
        def __aiter__(self):
            return self
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is AsyncIterator:
                return _check_methods(C, "__anext__", "__aiter__")
            return NotImplemented
    
    
    class AsyncGenerator(AsyncIterator):
    
        __slots__ = ()
    
        async def __anext__(self):
            """Return the next item from the asynchronous generator.
            When exhausted, raise StopAsyncIteration.
            """
            return await self.asend(None)
    
        @abstractmethod
        async def asend(self, value):
            """Send a value into the asynchronous generator.
            Return next yielded value or raise StopAsyncIteration.
            """
            raise StopAsyncIteration
    
        @abstractmethod
        async def athrow(self, typ, val=None, tb=None):
            """Raise an exception in the asynchronous generator.
            Return next yielded value or raise StopAsyncIteration.
            """
            if val is None:
                if tb is None:
                    raise typ
                val = typ()
            if tb is not None:
                val = val.with_traceback(tb)
            raise val
    
        async def aclose(self):
            """Raise GeneratorExit inside coroutine.
            """
            try:
                await self.athrow(GeneratorExit)
            except (GeneratorExit, StopAsyncIteration):
                pass
            else:
                raise RuntimeError("asynchronous generator ignored GeneratorExit")
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is AsyncGenerator:
                return _check_methods(C, '__aiter__', '__anext__',
                                      'asend', 'athrow', 'aclose')
            return NotImplemented
    
    
    AsyncGenerator.register(async_generator)
    
    
    class Iterable(metaclass=ABCMeta):
    
        __slots__ = ()
    
        @abstractmethod
        def __iter__(self):
            while False:
                yield None
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is Iterable:
                return _check_methods(C, "__iter__")
            return NotImplemented
    
    
    class Iterator(Iterable):
    
        __slots__ = ()
    
        @abstractmethod
        def __next__(self):
            'Return the next item from the iterator. When exhausted, raise StopIteration'
            raise StopIteration
    
        def __iter__(self):
            return self
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is Iterator:
                return _check_methods(C, '__iter__', '__next__')
            return NotImplemented
    
    Iterator.register(bytes_iterator)
    Iterator.register(bytearray_iterator)
    #Iterator.register(callable_iterator)
    Iterator.register(dict_keyiterator)
    Iterator.register(dict_valueiterator)
    Iterator.register(dict_itemiterator)
    Iterator.register(list_iterator)
    Iterator.register(list_reverseiterator)
    Iterator.register(range_iterator)
    Iterator.register(longrange_iterator)
    Iterator.register(set_iterator)
    Iterator.register(str_iterator)
    Iterator.register(tuple_iterator)
    Iterator.register(zip_iterator)
    
    
    class Reversible(Iterable):
    
        __slots__ = ()
    
        @abstractmethod
        def __reversed__(self):
            while False:
                yield None
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is Reversible:
                return _check_methods(C, "__reversed__", "__iter__")
            return NotImplemented
    
    
    class Generator(Iterator):
    
        __slots__ = ()
    
        def __next__(self):
            """Return the next item from the generator.
            When exhausted, raise StopIteration.
            """
            return self.send(None)
    
        @abstractmethod
        def send(self, value):
            """Send a value into the generator.
            Return next yielded value or raise StopIteration.
            """
            raise StopIteration
    
        @abstractmethod
        def throw(self, typ, val=None, tb=None):
            """Raise an exception in the generator.
            Return next yielded value or raise StopIteration.
            """
            if val is None:
                if tb is None:
                    raise typ
                val = typ()
            if tb is not None:
                val = val.with_traceback(tb)
            raise val
    
        def close(self):
            """Raise GeneratorExit inside generator.
            """
            try:
                self.throw(GeneratorExit)
            except (GeneratorExit, StopIteration):
                pass
            else:
                raise RuntimeError("generator ignored GeneratorExit")
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is Generator:
                return _check_methods(C, '__iter__', '__next__',
                                      'send', 'throw', 'close')
            return NotImplemented
    
    Generator.register(generator)
    
    
    class Sized(metaclass=ABCMeta):
    
        __slots__ = ()
    
        @abstractmethod
        def __len__(self):
            return 0
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is Sized:
                return _check_methods(C, "__len__")
            return NotImplemented
    
    
    class Container(metaclass=ABCMeta):
    
        __slots__ = ()
    
        @abstractmethod
        def __contains__(self, x):
            return False
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is Container:
                return _check_methods(C, "__contains__")
            return NotImplemented
    
    class Collection(Sized, Iterable, Container):
    
        __slots__ = ()
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is Collection:
                return _check_methods(C,  "__len__", "__iter__", "__contains__")
            return NotImplemented
    
    class Callable(metaclass=ABCMeta):
    
        __slots__ = ()
    
        @abstractmethod
        def __call__(self, *args, **kwds):
            return False
    
        @classmethod
        def __subclasshook__(cls, C):
            if cls is Callable:
                return _check_methods(C, "__call__")
            return NotImplemented
    
    
    ### SETS ###
    
    
    class Set(Collection):
    
        """A set is a finite, iterable container.
    
        This class provides concrete generic implementations of all
        methods except for __contains__, __iter__ and __len__.
    
        To override the comparisons (presumably for speed, as the
        semantics are fixed), redefine __le__ and __ge__,
        then the other operations will automatically follow suit.
        """
    
        __slots__ = ()
    
        def __le__(self, other):
            if not isinstance(other, Set):
                return NotImplemented
            if len(self) > len(other):
                return False
            for elem in self:
                if elem not in other:
                    return False
            return True
    
        def __lt__(self, other):
            if not isinstance(other, Set):
                return NotImplemented
            return len(self) < len(other) and self.__le__(other)
    
        def __gt__(self, other):
            if not isinstance(other, Set):
                return NotImplemented
            return len(self) > len(other) and self.__ge__(other)
    
        def __ge__(self, other):
            if not isinstance(other, Set):
                return NotImplemented
            if len(self) < len(other):
                return False
            for elem in other:
                if elem not in self:
                    return False
            return True
    
        def __eq__(self, other):
            if not isinstance(other, Set):
                return NotImplemented
            return len(self) == len(other) and self.__le__(other)
    
        @classmethod
        def _from_iterable(cls, it):
            '''Construct an instance of the class from any iterable input.
    
            Must override this method if the class constructor signature
            does not accept an iterable for an input.
            '''
            return cls(it)
    
        def __and__(self, other):
            if not isinstance(other, Iterable):
                return NotImplemented
            return self._from_iterable(value for value in other if value in self)
    
        __rand__ = __and__
    
        def isdisjoint(self, other):
            'Return True if two sets have a null intersection.'
            for value in other:
                if value in self:
                    return False
            return True
    
        def __or__(self, other):
            if not isinstance(other, Iterable):
                return NotImplemented
            chain = (e for s in (self, other) for e in s)
            return self._from_iterable(chain)
    
        __ror__ = __or__
    
        def __sub__(self, other):
            if not isinstance(other, Set):
                if not isinstance(other, Iterable):
                    return NotImplemented
                other = self._from_iterable(other)
            return self._from_iterable(value for value in self
                                       if value not in other)
    
        def __rsub__(self, other):
            if not isinstance(other, Set):
                if not isinstance(other, Iterable):
                    return NotImplemented
                other = self._from_iterable(other)
            return self._from_iterable(value for value in other
                                       if value not in self)
    
        def __xor__(self, other):
            if not isinstance(other, Set):
                if not isinstance(other, Iterable):
                    return NotImplemented
                other = self._from_iterable(other)
            return (self - other) | (other - self)
    
        __rxor__ = __xor__
    
        def _hash(self):
            """Compute the hash value of a set.
    
            Note that we don't define __hash__: not all sets are hashable.
            But if you define a hashable set type, its __hash__ should
            call this function.
    
            This must be compatible __eq__.
    
            All sets ought to compare equal if they contain the same
            elements, regardless of how they are implemented, and
            regardless of the order of the elements; so there's not much
            freedom for __eq__ or __hash__.  We match the algorithm used
            by the built-in frozenset type.
            """
            MAX = sys.maxsize
            MASK = 2 * MAX + 1
            n = len(self)
            h = 1927868237 * (n + 1)
            h &= MASK
            for x in self:
                hx = hash(x)
                h ^= (hx ^ (hx << 16) ^ 89869747)  * 3644798167
                h &= MASK
            h = h * 69069 + 907133923
            h &= MASK
            if h > MAX:
                h -= MASK + 1
            if h == -1:
                h = 590923713
            return h
    
    Set.register(frozenset)
    
    
    class MutableSet(Set):
        """A mutable set is a finite, iterable container.
    
        This class provides concrete generic implementations of all
        methods except for __contains__, __iter__, __len__,
        add(), and discard().
    
        To override the comparisons (presumably for speed, as the
        semantics are fixed), all you have to do is redefine __le__ and
        then the other operations will automatically follow suit.
        """
    
        __slots__ = ()
    
        @abstractmethod
        def add(self, value):
            """Add an element."""
            raise NotImplementedError
    
        @abstractmethod
        def discard(self, value):
            """Remove an element.  Do not raise an exception if absent."""
            raise NotImplementedError
    
        def remove(self, value):
            """Remove an element. If not a member, raise a KeyError."""
            if value not in self:
                raise KeyError(value)
            self.discard(value)
    
        def pop(self):
            """Return the popped value.  Raise KeyError if empty."""
            it = iter(self)
            try:
                value = next(it)
            except StopIteration:
                raise KeyError
            self.discard(value)
            return value
    
        def clear(self):
            """This is slow (creates N new iterators!) but effective."""
            try:
                while True:
                    self.pop()
            except KeyError:
                pass
    
        def __ior__(self, it):
            for value in it:
                self.add(value)
            return self
    
        def __iand__(self, it):
            for value in (self - it):
                self.discard(value)
            return self
    
        def __ixor__(self, it):
            if it is self:
                self.clear()
            else:
                if not isinstance(it, Set):
                    it = self._from_iterable(it)
                for value in it:
                    if value in self:
                        self.discard(value)
                    else:
                        self.add(value)
            return self
    
        def __isub__(self, it):
            if it is self:
                self.clear()
            else:
                for value in it:
                    self.discard(value)
            return self
    
    MutableSet.register(set)
    
    
    ### MAPPINGS ###
    
    
    class Mapping(Collection):
    
        __slots__ = ()
    
        """A Mapping is a generic container for associating key/value
        pairs.
    
        This class provides concrete generic implementations of all
        methods except for __getitem__, __iter__, and __len__.
    
        """
    
        @abstractmethod
        def __getitem__(self, key):
            raise KeyError
    
        def get(self, key, default=None):
            'D.get(k[,d]) -> D[k] if k in D, else d.  d defaults to None.'
            try:
                return self[key]
            except KeyError:
                return default
    
        def __contains__(self, key):
            try:
                self[key]
            except KeyError:
                return False
            else:
                return True
    
        def keys(self):
            "D.keys() -> a set-like object providing a view on D's keys"
            return KeysView(self)
    
        def items(self):
            "D.items() -> a set-like object providing a view on D's items"
            return ItemsView(self)
    
        def values(self):
            "D.values() -> an object providing a view on D's values"
            return ValuesView(self)
    
        def __eq__(self, other):
            if not isinstance(other, Mapping):
                return NotImplemented
            return dict(self.items()) == dict(other.items())
    
        __reversed__ = None
    
    Mapping.register(mappingproxy)
    
    
    class MappingView(Sized):
    
        __slots__ = '_mapping',
    
        def __init__(self, mapping):
            self._mapping = mapping
    
        def __len__(self):
            return len(self._mapping)
    
        def __repr__(self):
            return '{0.__class__.__name__}({0._mapping!r})'.format(self)
    
    
    class KeysView(MappingView, Set):
    
        __slots__ = ()
    
        @classmethod
        def _from_iterable(self, it):
            return set(it)
    
        def __contains__(self, key):
            return key in self._mapping
    
        def __iter__(self):
            yield from self._mapping
    
    KeysView.register(dict_keys)
    
    
    class ItemsView(MappingView, Set):
    
        __slots__ = ()
    
        @classmethod
        def _from_iterable(self, it):
            return set(it)
    
        def __contains__(self, item):
            key, value = item
            try:
                v = self._mapping[key]
            except KeyError:
                return False
            else:
                return v is value or v == value
    
        def __iter__(self):
            for key in self._mapping:
                yield (key, self._mapping[key])
    
    ItemsView.register(dict_items)
    
    
    class ValuesView(MappingView):
    
        __slots__ = ()
    
        def __contains__(self, value):
            for key in self._mapping:
                v = self._mapping[key]
                if v is value or v == value:
                    return True
            return False
    
        def __iter__(self):
            for key in self._mapping:
                yield self._mapping[key]
    
    ValuesView.register(dict_values)
    
    
    class MutableMapping(Mapping):
    
        __slots__ = ()
    
        """A MutableMapping is a generic container for associating
        key/value pairs.
    
        This class provides concrete generic implementations of all
        methods except for __getitem__, __setitem__, __delitem__,
        __iter__, and __len__.
    
        """
    
        @abstractmethod
        def __setitem__(self, key, value):
            raise KeyError
    
        @abstractmethod
        def __delitem__(self, key):
            raise KeyError
    
        __marker = object()
    
        def pop(self, key, default=__marker):
            '''D.pop(k[,d]) -> v, remove specified key and return the corresponding value.
              If key is not found, d is returned if given, otherwise KeyError is raised.
            '''
            try:
                value = self[key]
            except KeyError:
                if default is self.__marker:
                    raise
                return default
            else:
                del self[key]
                return value
    
        def popitem(self):
            '''D.popitem() -> (k, v), remove and return some (key, value) pair
               as a 2-tuple; but raise KeyError if D is empty.
            '''
            try:
                key = next(iter(self))
            except StopIteration:
                raise KeyError
            value = self[key]
            del self[key]
            return key, value
    
        def clear(self):
            'D.clear() -> None.  Remove all items from D.'
            try:
                while True:
                    self.popitem()
            except KeyError:
                pass
    
        def update(*args, **kwds):
            ''' D.update([E, ]**F) -> None.  Update D from mapping/iterable E and F.
                If E present and has a .keys() method, does:     for k in E: D[k] = E[k]
                If E present and lacks .keys() method, does:     for (k, v) in E: D[k] = v
                In either case, this is followed by: for k, v in F.items(): D[k] = v
            '''
            if not args:
                raise TypeError("descriptor 'update' of 'MutableMapping' object "
                                "needs an argument")
            self, *args = args
            if len(args) > 1:
                raise TypeError('update expected at most 1 arguments, got %d' %
                                len(args))
            if args:
                other = args[0]
                if isinstance(other, Mapping):
                    for key in other:
                        self[key] = other[key]
                elif hasattr(other, "keys"):
                    for key in other.keys():
                        self[key] = other[key]
                else:
                    for key, value in other:
                        self[key] = value
            for key, value in kwds.items():
                self[key] = value
    
        def setdefault(self, key, default=None):
            'D.setdefault(k[,d]) -> D.get(k,d), also set D[k]=d if k not in D'
            try:
                return self[key]
            except KeyError:
                self[key] = default
            return default
    
    MutableMapping.register(dict)
    
    
    ### SEQUENCES ###
    
    
    class Sequence(Reversible, Collection):
    
        """All the operations on a read-only sequence.
    
        Concrete subclasses must override __new__ or __init__,
        __getitem__, and __len__.
        """
    
        __slots__ = ()
    
        @abstractmethod
        def __getitem__(self, index):
            raise IndexError
    
        def __iter__(self):
            i = 0
            try:
                while True:
                    v = self[i]
                    yield v
                    i += 1
            except IndexError:
                return
    
        def __contains__(self, value):
            for v in self:
                if v is value or v == value:
                    return True
            return False
    
        def __reversed__(self):
            for i in reversed(range(len(self))):
                yield self[i]
    
        def index(self, value, start=0, stop=None):
            '''S.index(value, [start, [stop]]) -> integer -- return first index of value.
               Raises ValueError if the value is not present.
            '''
            if start is not None and start < 0:
                start = max(len(self) + start, 0)
            if stop is not None and stop < 0:
                stop += len(self)
    
            i = start
            while stop is None or i < stop:
                try:
                    v = self[i]
                    if v is value or v == value:
                        return i
                except IndexError:
                    break
                i += 1
            raise ValueError
    
        def count(self, value):
            'S.count(value) -> integer -- return number of occurrences of value'
            return sum(1 for v in self if v is value or v == value)
    
    Sequence.register(tuple)
    Sequence.register(str)
    Sequence.register(range)
    Sequence.register(memoryview)
    
    
    class ByteString(Sequence):
    
        """This unifies bytes and bytearray.
    
        XXX Should add all their methods.
        """
    
        __slots__ = ()
    
    ByteString.register(bytes)
    ByteString.register(bytearray)
    
    
    class MutableSequence(Sequence):
    
        __slots__ = ()
    
        """All the operations on a read-write sequence.
    
        Concrete subclasses must provide __new__ or __init__,
        __getitem__, __setitem__, __delitem__, __len__, and insert().
    
        """
    
        @abstractmethod
        def __setitem__(self, index, value):
            raise IndexError
    
        @abstractmethod
        def __delitem__(self, index):
            raise IndexError
    
        @abstractmethod
        def insert(self, index, value):
            'S.insert(index, value) -- insert value before index'
            raise IndexError
    
        def append(self, value):
            'S.append(value) -- append value to the end of the sequence'
            self.insert(len(self), value)
    
        def clear(self):
            'S.clear() -> None -- remove all items from S'
            try:
                while True:
                    self.pop()
            except IndexError:
                pass
    
        def reverse(self):
            'S.reverse() -- reverse *IN PLACE*'
            n = len(self)
            for i in range(n//2):
                self[i], self[n-i-1] = self[n-i-1], self[i]
    
        def extend(self, values):
            'S.extend(iterable) -- extend sequence by appending elements from the iterable'
            for v in values:
                self.append(v)
    
        def pop(self, index=-1):
            '''S.pop([index]) -> item -- remove and return item at index (default last).
               Raise IndexError if list is empty or index is out of range.
            '''
            v = self[index]
            del self[index]
            return v
    
        def remove(self, value):
            '''S.remove(value) -- remove first occurrence of value.
               Raise ValueError if the value is not present.
            '''
            del self[self.index(value)]
    
        def __iadd__(self, values):
            self.extend(values)
            return self
    
    MutableSequence.register(list)
    MutableSequence.register(bytearray)  # Multiply inheriting, see ByteString
    _collects_abc.py

     

    1.3.使用isinstance而不是type

    (1)语法:

    isinstance(object, classinfo)

    其中,object 是变量,classinfo 是类型即 (tuple,dict,int,float,list,bool等) 和 class类

    若参数 object 是 classinfo 类的实例,或者 object 是 classinfo 类的子类的一个实例, 返回 True。
    若 object 不是一个给定类型的的对象, 则返回结果总是False。

    若 classinfo 不是一种数据类型或者由数据类型构成的元组,将引发一个 TypeError 异常。

    (2)isinstance简单用法

    >>> isinstance(1,int)
    True
    >>> 
    >>> isinstance('1',str)
    True
    >>> 
    >>> isinstance(1,list)
    False

    (3)type()与isinstance()的区别:

    • 共同点两者都可以判断对象类型
    • 不同点对于一个 class 类的子类对象类型判断,type就不行了,而 isinstance 可以。
    class A:
        pass
    
    class B(A):
        pass
    
    b = B()
    
    #判断b是不是B的类型
    print(isinstance(b,B))        #True
    # b是不是A的类型呢,也是的
    #因为B继承A,isinstance内部会去检查继承链
    print(isinstance(b,A))        #True
    
    print(type(b) is B)           #True
    #b指向了B()对象,虽然A是B的父类,但是A是另外一个对象,它们的id是不相等的
    print(type(b) is A)           #False

    1.4.类变量和实例变量

     python的类变量和实例变量,顾名思义,类变量是指跟类的变量,而实例变量,指跟类的具体实例相关联的变量

    class A:
        #类变量
        bb = 11
        def __init__(self,x,y):
            #实例变量
            self.x = x
            self.y = y
    
    a = A(2,3)
    A.bb = 111111
    print(a.x,a.y,a.bb)    # 2 3 111111
    print(A.bb)            # 111111
    
    a.bb = 2222     #实际上会在实例对象a里面新建一个属性bb
    print(a.bb)          # 2222
    print(A.bb)          # 111111

    1.5.类和实例属性的查找顺序

    class D:
        pass
    
    class C(D):
        pass
    
    class B(D):
        pass
    
    class A(B,C):
        pass
    
    #顺序:A,B,C,D
    #__mro__,类的属性查找顺序
    print(A.__mro__)      #(<class '__main__.A'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.D'>, <class 'object'>)

     

    class D:
        pass
    
    class E:
        pass
    
    class C(E):
        pass
    
    class B(D):
        pass
    
    class A(B,C):
        pass
    
    #顺序:A,B,D,C,E
    #__mro__,类的属性查找顺序
    print(A.__mro__)      
    
    #(<class '__main__.A'>, <class '__main__.B'>, <class '__main__.D'>, <class '__main__.C'>, <class '__main__.E'>, <class 'object'>)

    1.6.类方法,静态方法,和实例方法

    实例:

    class Date():
        #构造函数
        def __init__(self,year,month,day):
            self.year = year
            self.month = month
            self.day = day
    
        #实例方法
        def tomorrow(self):
            self.day += 1
    
        # 静态方法不用写self
        @staticmethod
        def parse_from_string(date_str):
            year, month, day = tuple(date_str.split("-"))
            # 静态方法不好的地方是采用硬编码,如果用类方法的话就不会了
            return Date(int(year), int(month), int(day))
    
        #类方法
        @classmethod
        def from_string(cls, date_str):
            year, month, day = tuple(date_str.split("-"))
            # cls:传进来的类,而不是像静态方法把类写死了
            return cls(int(year), int(month), int(day))
    
        def __str__(self):
            return '%s/%s/%s'%(self.year,self.month,self.day)
    
    if __name__ == "__main__":
        new_day = Date(2018,5,9)
        #实例方法
        new_day.tomorrow()
        print(new_day)       #2018/5/10
    
        #静态方法
        date_str = '2018-05-09'
        new_day = Date.parse_from_string(date_str)
        print(new_day)       #2018/5/9
    
        # 类方法
        date_str = '2018-05-09'
        new_day = Date.from_string(date_str)
        print(new_day)  # 2018/5/9

    1.7.python对象的自省机制

     在计算机编程中自省是指一种能力:检查某些事物以确定它是什么、它知道什么以及它能做什么。自省向程序员提供了极大的灵活性和控制力。

    class Person:
        '''人类'''
        name = "user"
    
    
    class Student(Person):
        def __init__(self,school_name):
            self.school_name = school_name
    
    if __name__ == "__main__":
    
        user = Student('仙剑')
        #通过 __dict__ 查询有哪些属性
        print(user.__dict__)        #{'school_name': '仙剑'}
    
        print(Person.__dict__)      #{'__module__': '__main__', '__doc__': '人类', 'name': 'user', '__dict__': <attribute '__dict__' of 'Person' objects>, '__weakref__': <attribute '__weakref__' of 'Person' objects>}
    
        print(Person.__doc__)       #人类
    
        #可以添加属性
        user.__dict__['school_addr'] = '北京'
        print(user.school_addr)     #北京
    
    
        #dir也可以查看属性,比__dict__功能更强大
        print(dir(user))
    #['__class__', '__delattr__', '__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_subclass__', '__le__', '__lt__', '__module__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__weakref__', 'name', 'school_addr', 'school_name']

    1.8.super函数

    super执行的顺序

    class A:
        def __init__(self):
            print('A')
    
    class B(A):
        def __init__(self):
            print('B')
            super().__init__()
    
    
    class C(A):
        def __init__(self):
            print('C')
            super().__init__()
    
    
    class D(B,C):
        def __init__(self):
            print('D')
            super(D, self).__init__()
    
    if __name__ == '__main__':
        print(D.__mro__)          #(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>)
        d = D()
        
        
    #执行结果
    D
    B
    C
    A

    1.9.with语句(上下文管理器)

    #上下文管理器
    class Sample:
        def __enter__(self):
            print('enter')
            #获取资源
            return self
    
        def __exit__(self, exc_type, exc_val, exc_tb):
            #释放资源
            print('exit')
    
        def do_something(self):
            print('doing something')
    
    #会自动执行enter和exit方法
    with Sample() as sample:
        sample.do_something()
    
    
    # 运行结果
    enter
    doing something
    exit
  • 相关阅读:
    四则运算(判断正误)
    Right-BICEP要求四则2的测试用例
    《构建之法》阅读笔记02
    第二周的学习进度
    四则运算(升级)
    构建之法阅读笔记01
    新手安装使用codeblocks
    新的一年你该如何起飞
    中国国家图书馆 注册后可以免费使用 维普等多个数据库资源
    c++学籍管理系统v1.10
  • 原文地址:https://www.cnblogs.com/gaidy/p/11887040.html
Copyright © 2011-2022 走看看