zoukankan      html  css  js  c++  java
  • Promethues(八) 监控kubernetes

    prometheus相关的服务都部署在monitoring这个namespace下

    部署prometheus服务

    1. 创建namespace

      $ cd /opt/k8s/prometheus
      $ cat>1-namespace.yml<<EOF
      apiVersion: v1
      kind: Namespace
      metadata:
        name: monitoring
      EOF
      
      
    2. 创建prometheus对应的配置文件,利用kubernetes的ConfigMap

      $ cd /opt/k8s/prometheus 
      $ cat>2-prom-cnfig.yml<<EOF
      apiVersion: v1
      kind: ConfigMap
      metadata:
        name: prom-config
        namespace: monitoring
      data:
        prometheus.yml: |
          global:
            scrape_interval: 15s
            scrape_timeout: 15s
          scrape_configs:
          - job_name: 'prometheus'
            static_configs:
            - targets: ['localhost:9090']
      EOF
      
      
    3. 创建用来存储prometheus数据的pv、pvc(采用本地存储、可以通过搭建NFS、GlusterFs等分布式文件系统代替)

      $ cd /opt/k8s/prometheus
      $ cat>3-prom-pv.yml<<EOF
      kind: PersistentVolume
      apiVersion: v1
      metadata:
        namespace: monitoring
        name: prometheus
        labels:
          type: local
          app: prometheus
      spec:
        capacity:
          storage: 10Gi
        accessModes:
          - ReadWriteOnce
        hostPath:
          path: /opt/k8s/prometheus/data
      ---
      
      kind: PersistentVolumeClaim
      apiVersion: v1
      metadata:
        namespace: monitoring
        name: prometheus-claim
      spec:
        accessModes:
          - ReadWriteOnce
        resources:
          requests:
            storage: 10Gi 
      EOF
      
      
    4. 创建启动prometheus的文件,以deployment形式部署,外部访问通过NodePort类型的service

      $ cd /opt/k8s/prometheus
      $ cat>4-prometheus.yml<<EOF
      apiVersion: apps/v1
      kind: Deployment
      metadata:
        name: prometheus
        namespace: monitoring
        labels:
          app: prometheus
      spec:
        selector:
          matchLabels:
            app: prometheus
        replicas: 1
        template:
          metadata:
            labels:
              app: prometheus
          spec:
            containers:
            - name: prometheus
              image: prom/prometheus:v2.16.0
              args:
              - '--config.file=/etc/prometheus/prometheus.yml'
              - '--storage.tsdb.path=/prometheus'
              - "--storage.tsdb.retention=7d"
              - "--web.enable-lifecycle"
              ports:
              - containerPort: 9090
              volumeMounts:
              - mountPath: "/prometheus"
                subPath: prometheus
                name: data
              - mountPath: "/etc/prometheus"
                name: config
              resources:
                requests:
                  cpu: 500m
                  memory: 2Gi
                limits:
                  cpu: 500m
                  memory: 2Gi
            volumes:
            - name: config
              configMap:
                name: prom-config
            - name: data
              persistentVolumeClaim:
                claimName: prometheus-claim
      	     
      ---
      apiVersion: v1
      kind: Service
      metadata:
        namespace: monitoring
        name: prometheus
      spec:
        type: NodePort
        ports:
          - port: 9090
            targetPort: 9090
            nodePort: 9090
        selector:
          app: prometheus
         
      EOF
      
      
      • 在Prometheus的启动命令中,传入了参数storage.tsdb.path、storage.tsdb.retention分别指定了Prometheus数据存储路径、存储时间
      • web.enable-lifecycle 当配置信息变更后通过/-/reload重新加载新的配置内容,不用重启服务
    5. 启动Prometheus服务

      $ cd /opt/k8s/prometheus
      $ mkdir data & chmod -R 777 data
      $ kubectl create -f 1-namespace.yml -f 2-prom-cnfig.yml -f 3-prom-pv.yml -f 4-prometheus.yml
      
      
    6. 查看组件状态,确保所有服务正常启动

      $ kubectl get all -n monitoring
      NAME                              READY   STATUS    RESTARTS   AGE
      pod/prometheus-57cf64764d-xqnvl   1/1     Running   0          51s
      
      NAME                 TYPE       CLUSTER-IP       EXTERNAL-IP   PORT(S)         AGE
      service/prometheus   NodePort   10.254.209.164   <none>        9090:9090/TCP   51s
      
      NAME                         READY   UP-TO-DATE   AVAILABLE   AGE
      deployment.apps/prometheus   1/1     1            1           51s
      
      NAME                                    DESIRED   CURRENT   READY   AGE
      replicaset.apps/prometheus-57cf64764d   1         1         1       51s
      
      
    7. 界面访问

    和kubernetes监控相关的技术

    • cAdvisor google 开源的一款容器监控方案,收集容器自身的各种资源使用、性能相关信息,通过resutful API的形式提供给外部。kubernetes把cAdvisor对应的功能集成到了kubelet中,所以不需要再单独部署,直接从kubelet获取,并且kubelet还对容器信息进行summary,以pod为单位供外部调用。
    • metrics-server 是kubernetes核心监控流程中的一个组件,是Heapster的替代方案,从kubelet指标接口中获取信息,主要是CPU、Memory,再通过API server暴露出去。主要供kubectl top、HPA等kubernetes组件使用。只在内存中存储最后一次获取到的指标信息,不负责数据存储
    • kube-state-metrics 通过监听 API Server 生成有关资源对象的状态指标,比如 Deployment、replica sets等。只在内存中存储最后一次获取到的指标信息,不负责数据存储
    • node-exporter Prometheus官方提供的,专门用来收集*NIX系统自身、以及对应硬件的指标信息
    • kube-prometheus 一站式的kubernetes监控方案,将node-exporter、prometheus、kube-state-metrics、Grafana、metrics-server等组件收集起来,提供了更加便捷的脚本供使用者快速搭建一个完整的监控平台。

    kubernetes监控内容

    • 对集群自身状态的监控 ,如节点自身的CPU、Memory、IO、Network等信息
    • kubernetes系统自身组件的监控如 kube-schedule-manager、kube-proxy、kubelet等
    • 集群中运行容器的监控,如容器、Pod等为单元的CPU、Memory信息
    • 集群中编排组件对应的指标监控,如Deployment、Daemonset等

    本文采用自己部署组件的形式,看如何一步一步搭建一个监控平台。对于有快速搭建需求的,可以参考 kube-prometheus

    部署node-exporter

    因为要监控每一个节点,所以采用Daemonset控制器来部署node-exporter,在每个节点上都运行一个Pod

    1. 启动文件

      $ cd /opt/k8s/prometheus
      $ cat>5-node-exporter.yml<<EOF
      apiVersion: apps/v1
      kind: DaemonSet
      metadata:
        labels:
          app: node-exporter
        name: node-exporter
        namespace: monitoring
      spec:
        selector:
          matchLabels:
            app: node-exporter
        template:
          metadata:
            labels:
              app: node-exporter
          spec:
            containers:
            - name: node-exporter
              image: 192.168.0.107/prometheus/node-exporter:v0.18.1
              args:
              - --web.listen-address=:9100
              - --path.procfs=/host/proc
              - --path.sysfs=/host/sys
              - --path.sysfs=/host/sys
              - --path.rootfs=/host/root
              - --no-collector.hwmon
              - --collector.filesystem.ignored-mount-points=^/(dev|proc|sys|var/lib/docker/.+)($|/)
              - --collector.filesystem.ignored-fs-types=^(autofs|binfmt_misc|cgroup|configfs|debugfs|devpts|devtmpfs|fusectl|hugetlbfs|mqueue|overlay|proc|procfs|pstore|rpc_pipefs|securityfs|sysfs|tracefs)$
              resources:
                limits:
                  cpu: 250m
                  memory: 180Mi
                requests:
                  cpu: 102m
                  memory: 180Mi
              ports:
              - containerPort: 9100
              volumeMounts:
              - mountPath: /host/proc
                name: proc
                readOnly: false
              - mountPath: /host/sys
                name: sys
                readOnly: false
              - mountPath: /host/root
                mountPropagation: HostToContainer
                name: root
                readOnly: true
            hostNetwork: true
            hostPID: true
            nodeSelector:
              kubernetes.io/os: linux
            securityContext:
              runAsNonRoot: true
              runAsUser: 65534
            
            tolerations:
            - operator: Exists
            volumes:
            - hostPath:
                path: /proc
              name: proc
            - hostPath:
                path: /sys
              name: sys
            - hostPath:
                path: /
              name: root
        
      EOF
      
      
    2. 启动node-exporter

      $ cd /opt/k8s/prometheus
      $ kubectl create -f 5-node-exporter.yml 
      $ kubectl -n monitoring get pod | grep node
      node-exporter-854vr           1/1     Running   6          50m
      node-exporter-lv9pv           1/1     Running   0          50m
      
      
    3. 通过prometheus收集node-exporter的指标信息

      因为集群的节点之后可能会动态扩容和缩减,所以不便采用静态配置的形式,Prometheus给我们提供了Kubernetes对应的服务发现功能,可以实现对Kubernetes的动态监控。其中对节点的监控利用node的服务发现方式,在prometheus的配置文件中追加如下配置(对应的2-prom-cnfig.yml也需要追加,否则Configmap重建后这些信息就丢掉了)

      $ kubectl -n monitoring edit configmaps prom-config
      
      
      - job_name: "kubernetes-nodes"
          kubernetes_sd_configs:
          - role: node
          relabel_configs:
          - source_labels: [__address__]
            regex: '(.*):10250'
            replacement: '${1}:9100'
            target_label: __address__
            action: replace
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
      
      

      追加完成后执行如下命令,重新加载配置项,至于为何这样配置,后面章节配置原理具体讲解

      $ curl -XPOST http://192.168.0.107:9090/-/reload
      
      

      此时,prometheus就会尝试获取集群node信息,查看promethes的日志信息,会发现如下错误提示

      level=error ts=2020-03-22T10:37:13.856Z caller=klog.go:94 component=k8s_client_runtime func=ErrorDepth msg="/app/discovery/kubernetes/kubernetes.go:333: Failed to list *v1.Node: nodes is forbidden: User "system:serviceaccount:monitoring:default" cannot list resource "nodes" in API group "" at the cluster scope"
      
      

      意思是用默认的serviceaccount不能 list *v1.Node,因此需要我们为Prometheus重新创建serviceaccount,并赋予相应的权限

    4. 创建prometheus对应的serviceaccount,并赋予相应的权限

      $ cd /opt/k8s/prometheus
      $ cat>6-prometheus-serivceaccount-role.yaml<<EOF
      apiVersion: v1
      kind: ServiceAccount
      metadata:
        name: prometheus-k8s
        namespace: monitoring
      
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRole
      metadata:
        name: prometheus-k8s
      rules:
      - apiGroups: [""]
        resources:
        - nodes/proxy
        - nodes
        - namespaces
        - endpoints
        - pods
        - services
        verbs: ["get","list","watch"]
      - apiGroups: [""]
        resources:
        - nodes/metrics
        verbs: ["get"]
      - nonResourceURLs:
        - /metrics
        verbs: ["get"]
      - apiGroups:
        - extensions
        resources:
        - ingresses
        verbs: ["get", "list", "watch"]
      
      ---
      apiVersion: rbac.authorization.k8s.io/v1
      kind: ClusterRoleBinding
      metadata:
        name: prometheus-k8s
      roleRef:
        apiGroup: rbac.authorization.k8s.io
        kind: ClusterRole
        name: prometheus-k8s
      subjects:
      - kind: ServiceAccount
        name: prometheus-k8s
        namespace: monitoring
      
      EOF
      
      
      $ cd /opt/k8s/prometheus
      $ kubectl create -f 6-prometheus-serivceaccount-role.yaml
       
      

      修改Prometheus的启动yaml,追加serivceaccount配置,重启Prometheus

      ...
      spec:
        serviceAccountName: prometheus-k8s
        containers:
        - name: prometheus                 
      ...
      
      

      查看prometheus监控对象列表

    kubernetes_sd_config 配置原理详解

    1. 目标地址查找

      当kubernetes_sd_config配置的role是node时,prometheus启动后会调用kubernetes的 LIST Node API获取node相关信息,并从node对象中获取IP和PORT来构成监控地址。

      其中IP获取按照如下顺序InternalIP, ExternalIP, LegacyHostIP, HostName查找

      Port值默认采用Kubelet的HTTP port。

      通过如下命令可查看 list Node接口返回的IP 和 Port信息

      $ kubectl get node -o=jsonpath='{range .items[*]}{.status.addresses}{"	"}{.status.daemonEndpoints}{"
      "}{end}'
      [map[address:192.168.0.107 type:InternalIP] map[address:master type:Hostname]]  map[kubeletEndpoint:map[Port:10250]]
      [map[address:192.168.0.114 type:InternalIP] map[address:slave type:Hostname]]   map[kubeletEndpoint:map[Port:10250]]
      
      

      上述返回结果表示集群中有两个节点,构成的taget地址分别是

      192.168.0.107:10250
      192.168.0.114:10250
      
      
    2. relabe_configs

      Relabeling可以让Prometheus在抓取数据之前动态的修改标签的值。Prometheus有许多默认标签,其中下面几个和我们处理有关

      • __address__:初始化时会设置成目标地址对应的<host>:<port>
      • instance:__address__标签的值经过Relabel阶段后,会设置给标签 instance, 即instance__address__标签经过Relabel后的值
      • __scheme__ :默认值 http
      • __metrics_path__ 默认值 /metrics

      Prometheus拉取指标信息的目的地址是把这几个标签连接起来__scheme__://instance/__metrics_path__

    3. 我们启动node-expeorter后,在各个节点的:9100/metrics上暴露了node指标信息,然后在prometheus中追加了如下配置段

      - job_name: "kubernetes-nodes"
          kubernetes_sd_configs:
          - role: node
          relabel_configs:
          - source_labels: [__address__]
            regex: '(.*):10250'
            replacement: '${1}:9100'
            target_label: __address__
            action: replace
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
            
      

      其中relabel_configs的第一个配置片段

        - source_labels: [__address__]
           regex: '(.*):10250'
           replacement: '${1}:9100'
           target_label: __address__
           action: replace
      
      
      • 通过regex从__address__中匹配出IP地址
      • replacement:对应的值设置成 ${IP}:9100
      • target_label: 将__address__的值替换成replacement,即 ${IP}:9100

      经过这些步骤后,拼接成的获取指标地址为[http://192.168.0.107:9100/metrics, http://192.168.0.114:9100/metrics],和我们的node-exporter暴露的指标地址匹配,就可以拉取Node的指标信息了

      另外因为prometheus会将node对应的标签变成__meta_kubernetes_node_label_<labelname>,所以追加了一个labelmap的动作,再把这些标签名字还原出来

    4. 完整配置例子参考prometheus-kubernetes

    追加收集kubelete提供的指标

    kubelet会收集一些api server 、etcd等服务的指标信息,可以通过如下命令查看

    $ kubectl get --raw https://192.168.0.107:10250/metrics 
    
    
    • 其中10250是kubelet的默认监听端口

    接下来通过在promehteus中追加配置,让promehteus拉取这些信息

    - job_name: "kubernetes-kubelet"
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
    

    追加收集cAdvisor指标,实现对集群容器的监控

    kubelet默认集成了cAdvisor,用来对集群中容器信息进行收集,Kubernetes 1.7.3以及之后的版本中,把cAdvisor收集的指标信息(以container_开头)从Kubelet对应的/metrics中移除了,所以需要额外配置一个收集cAdvisor的job。cAdvisor指标调用命令

    $ kubectl get --raw https://192.168.0.107:6443/api/v1/nodes/master/proxy/metrics/cadvisor 
    
    
    • 其中10250是kubelet的默认监听端口

    接下来通过在promehteus中追加配置,让promehteus拉取这些信息

    - job_name: "kubernetes-cadvisor"
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
             
    

    添加完成后重新load 配置文件,查看prometheus监控对象列表

    完整的配置文件如下

    $ cd /opt/k8s/prometheus
    $ cat 2-prom-cnfig.yml
    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: prom-config
      namespace: monitoring
    data:
      prometheus.yml: |
        global:
          scrape_interval: 15s
          scrape_timeout: 15s
        scrape_configs:
        - job_name: 'prometheus'
          static_configs:
          - targets: ['localhost:9090']
        - job_name: "kubernetes-nodes"
          kubernetes_sd_configs:
          - role: node
          relabel_configs:
          - source_labels: [__address__]
            regex: '(.*):10250'
            replacement: '${1}:9100'
            target_label: __address__
            action: replace
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
        - job_name: "kubernetes-kubelet"
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          kubernetes_sd_configs:
          - role: node
          relabel_configs:
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
        - job_name: "kubernetes-cadvisor"
          scheme: https
          tls_config:
            ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
          bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
          kubernetes_sd_configs:
          - role: node
          relabel_configs:
          - action: labelmap
            regex: __meta_kubernetes_node_label_(.+)
          - target_label: __address__
            replacement: kubernetes.default.svc:443
          - source_labels: [__meta_kubernetes_node_name]
            regex: (.+)
            target_label: __metrics_path__
            replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
    
    

    部署grafana

    1. 创建用来存储grafana数据的pv、pvc(采用本地存储、可以通过搭建NFS、GlusterFs等分布式文件系统代替)

      $ cd /opt/k8s/prometheus
      $ cat>7-grafana-pv.yml<<EOF
      kind: PersistentVolume
      apiVersion: v1
      metadata:
        namespace: monitoring
        name: grafana
        labels:
          type: local
          app: grafana
      spec:
        capacity:
          storage: 10Gi
        accessModes:
          - ReadWriteOnce
        hostPath:
          path: /opt/k8s/prometheus/grafana-pvc
      ---
      
      kind: PersistentVolumeClaim
      apiVersion: v1
      metadata:
        namespace: monitoring
        name: grafana-claim
      spec:
        accessModes:
          - ReadWriteOnce
        resources:
          requests:
            storage: 10Gi 
      EOF
      
      
      
    2. grafana部署文件

      $ cd /opt/k8s/prometheus
      $ cat>8-grafana.yml<<EOF
      apiVersion: apps/v1
      kind: Deployment
      metadata:
        labels:
          app: grafana
        name: grafana
        namespace: monitoring
      spec:
        replicas: 1
        selector:
          matchLabels:
            app: grafana
        template:
          metadata:
            labels:
              app: grafana
          spec:
            containers:
            - image: grafana/grafana:6.6.2
              name: grafana
              ports:
              - containerPort: 3000
                name: http
              readinessProbe:
                httpGet:
                  path: /api/health
                  port: http
              resources:
                limits:
                  cpu: 200m
                  memory: 400Mi
                requests:
                  cpu: 100m
                  memory: 200Mi
              volumeMounts:
              - mountPath: /var/lib/grafana
                name: grafana-pvc
                readOnly: false
                subPath: data
              - mountPath: /etc/grafana/provisioning/datasources
                name: grafana-pvc
                readOnly: false
                subPath: datasources
              - mountPath: /etc/grafana/provisioning/dashboards
                name: grafana-pvc
                readOnly: false
                subPath: dashboards-pro
              - mountPath: /grafana-dashboard-definitions/0
                name: grafana-pvc
                readOnly: false
                subPath: dashboards
            nodeSelector:
              beta.kubernetes.io/os: linux
            securityContext:
              runAsNonRoot: true
              runAsUser: 65534
            volumes:
            - name: grafana-pvc
              persistentVolumeClaim:
                claimName: grafana-claim
      
      ---
      apiVersion: v1
      kind: Service
      metadata:
        namespace: monitoring
        name: grafana
      spec:
        type: NodePort
        ports:
          - port: 3000
            targetPort: 3000
            nodePort: 3000
        selector:
          app: grafana
        
      EOF
      
      
    3. 启动grafana

      1. 创建grafana挂载目录

        $ cd /opt/k8s/prometheus
        $ mkdir -p grafana-pvc/data
        $ mkdir -p grafana-pvc/datasources
        $ mkdir -p grafana-pvc/dashboards-pro
        $ mkdir -p grafana-pvc/dashboards
        
        $ chmod -R 777 grafana-pvc
        
        
        • data目录存放grafana的数据
        • datasources存放预定义的数据源
        • dashboards-pro存放dashboards管理文件,其中配置的dashboard的文件地址指向grafana-pvc/dashboards挂载到容器中的地址/grafana-dashboard-definitions/0
        • dashboards存放真正的dashboards定义文件(json)
      2. 创建默认的数据源文件

        $ cd /opt/k8s/prometheus/grafana-pvc/datasources
        $ cat > datasource.yaml<<EOF
        apiVersion: 1
        datasources:
        - name: Prometheus
          type: prometheus
          access: proxy
          url: http://prometheus.monitoring.svc:9090
        
        EOF
        
        
      3. 创建默认的dashboards管理文件

        $ cd /opt/k8s/prometheus/grafana-pvc/dashboards-pro
        $ cat >dashboards.yaml<<EOF
        apiVersion: 1
        providers:
        - name: '0'
          orgId: 1
          folder: ''
          type: file
          editable: true
          updateIntervalSeconds: 10
          allowUiUpdates: false
          options:
            path: /grafana-dashboard-definitions/0
        EOF
        
        
      4. 创建默认的dashboard定义文件

        可以到 a collection of shared dashboards,找到自己需要的dashboard模版,下载对应的json文件将对应文件存放到/opt/k8s/prometheus/grafana-pvc/dashboards),这里作为示例,下载1 Node Exporter for Prometheus Dashboard CN v20191102,对应的ID是8919。

        $ cd /opt/k8s/prometheus/grafana-pvc/dashboards
        $ wget https://grafana.com/api/dashboards/8919/revisions/11/download -o node-exporter-k8s.json
        
        

        因为模版中的数据源默认用的是${DS_PROMETHEUS_111},从界面导入时有配置项供替换,我们直接下载json文件,所以通过直接修改文件,把数据源改成我们在/opt/k8s/prometheus/grafana-pvc/datasources下配置的数据源

        $ cd /opt/k8s/prometheus/grafana-pvc/dashboards
        $ sed -i "s/${DS_PROMETHEUS_111}/Prometheus/g" node-exporter-k8s.json
        
        

        修改title

        ...
        "timezone": "browser",
        "title": "k8s-node-monitoring", 
        
             ...
        
        
      5. 启动

        $ cd /opt/k8s/prometheus/
        $ kubectl create -f 7-grafana-pv.yml 8-grafana.yml 
        
        
    4. 通过界面查看,因为我们已经默认设置过数据源、dashboard等信息,可以直接查看对应的dashboard

    在部署grafana时,我们配置了默认的数据源、dashboard等信息,主要是为了实现,系统部署后这些默认监控指标可以直接观察,不需要实施人员现场配置。
    其他的监控例如使用 Kube-state-metrics以及cAdvisor metrics实现对集群中Deployment、StatefulSet、容器、pod的监控也可以采用这种形式来实现。如可以利用1. Kubernetes Deployment Statefulset Daemonset metrics作为模版,稍微修改满足我们的监控需要,这里就不再展示具体步骤,读者可以自行尝试。

  • 相关阅读:
    win10安装vue
    通过docker安装rabbitmq
    python定时访问主机进程信息并反馈到远程服务器
    win10配置Apache+部署静态html页面
    HTTP协议—HTTP报文格式详解
    python脚本编写(纯干货)
    linux/CentOS的安装(萌新版)
    gradle中调用ant.unzip对zip包解压缩
    通过gradle运行测试脚本
    使用rest-assured测试rest service, 遇到“415 Unsupported Media Type”
  • 原文地址:https://www.cnblogs.com/gaofeng-henu/p/12555116.html
Copyright © 2011-2022 走看看