zoukankan      html  css  js  c++  java
  • Python绘制3D图形

    来自:https://www.jb51.net/article/139349.htm

    3D图形在数据分析、数据建模、图形和图像处理等领域中都有着广泛的应用,下面将给大家介绍一下如何使用python进行3D图形的绘制,包括3D散点、3D表面、3D轮廓、3D直线(曲线)以及3D文字等的绘制。

    准备工作:

    python中绘制3D图形,依旧使用常用的绘图模块matplotlib,但需要安装mpl_toolkits工具包,安装方法如下:windows命令行进入到python安装目录下的Scripts文件夹下,执行: pip install --upgrade matplotlib即可;linux环境下直接执行该命令。

    安装好这个模块后,即可调用mpl_tookits下的mplot3d类进行3D图形的绘制。

    下面以实例进行说明。

    1、3D表面形状的绘制

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
      
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
      
    # Make data
    u = np.linspace(0, 2 * np.pi, 100)
    v = np.linspace(0, np.pi, 100)
    x = 10 * np.outer(np.cos(u), np.sin(v))
    y = 10 * np.outer(np.sin(u), np.sin(v))
    z = 10 * np.outer(np.ones(np.size(u)), np.cos(v))
      
    # Plot the surface
    ax.plot_surface(x, y, z, color='b')
      
    plt.show()

    球表面,结果如下:

    2、3D直线(曲线)的绘制

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    import matplotlib as mpl
    from mpl_toolkits.mplot3d import Axes3D
    import numpy as np
    import matplotlib.pyplot as plt
      
    mpl.rcParams['legend.fontsize'] = 10
      
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    theta = np.linspace(-4 * np.pi, 4 * np.pi, 100)
    z = np.linspace(-2, 2, 100)
    r = z**2 + 1
    x = r * np.sin(theta)
    y = r * np.cos(theta)
    ax.plot(x, y, z, label='parametric curve')
    ax.legend()
      
    plt.show()

    这段代码用于绘制一个螺旋状3D曲线,结果如下:

    3、绘制3D轮廓

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    from mpl_toolkits.mplot3d import axes3d
    import matplotlib.pyplot as plt
    from matplotlib import cm
      
    fig = plt.figure()
    ax = fig.gca(projection='3d')
    X, Y, Z = axes3d.get_test_data(0.05)
    cset = ax.contour(X, Y, Z, zdir='z', offset=-100, cmap=cm.coolwarm)
    cset = ax.contour(X, Y, Z, zdir='x', offset=-40, cmap=cm.coolwarm)
    cset = ax.contour(X, Y, Z, zdir='y', offset=40, cmap=cm.coolwarm)
      
    ax.set_xlabel('X')
    ax.set_xlim(-40, 40)
    ax.set_ylabel('Y')
    ax.set_ylim(-40, 40)
    ax.set_zlabel('Z')
    ax.set_zlim(-100, 100)
      
    plt.show()

    绘制结果如下:

    4、绘制3D直方图

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
      
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    x, y = np.random.rand(2, 100) * 4
    hist, xedges, yedges = np.histogram2d(x, y, bins=4, range=[[0, 4], [0, 4]])
      
    # Construct arrays for the anchor positions of the 16 bars.
    # Note: np.meshgrid gives arrays in (ny, nx) so we use 'F' to flatten xpos,
    # ypos in column-major order. For numpy >= 1.7, we could instead call meshgrid
    # with indexing='ij'.
    xpos, ypos = np.meshgrid(xedges[:-1] + 0.25, yedges[:-1] + 0.25)
    xpos = xpos.flatten('F')
    ypos = ypos.flatten('F')
    zpos = np.zeros_like(xpos)
      
    # Construct arrays with the dimensions for the 16 bars.
    dx = 0.5 * np.ones_like(zpos)
    dy = dx.copy()
    dz = hist.flatten()
      
    ax.bar3d(xpos, ypos, zpos, dx, dy, dz, color='b', zsort='average')
      
    plt.show()

    绘制结果如下:

    5、绘制3D网状线

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    from mpl_toolkits.mplot3d import axes3d
    import matplotlib.pyplot as plt
      
      
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
      
    # Grab some test data.
    X, Y, Z = axes3d.get_test_data(0.05)
      
    # Plot a basic wireframe.
    ax.plot_wireframe(X, Y, Z, rstride=10, cstride=10)
      
    plt.show()

    绘制结果如下:

    6、绘制3D三角面片图

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
      
      
    n_radii = 8
    n_angles = 36
      
    # Make radii and angles spaces (radius r=0 omitted to eliminate duplication).
    radii = np.linspace(0.125, 1.0, n_radii)
    angles = np.linspace(0, 2*np.pi, n_angles, endpoint=False)
      
    # Repeat all angles for each radius.
    angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
      
    # Convert polar (radii, angles) coords to cartesian (x, y) coords.
    # (0, 0) is manually added at this stage, so there will be no duplicate
    # points in the (x, y) plane.
    x = np.append(0, (radii*np.cos(angles)).flatten())
    y = np.append(0, (radii*np.sin(angles)).flatten())
      
    # Compute z to make the pringle surface.
    z = np.sin(-x*y)
      
    fig = plt.figure()
    ax = fig.gca(projection='3d')
      
    ax.plot_trisurf(x, y, z, linewidth=0.2, antialiased=True)
      
    plt.show(

    绘制结果如下:

    7、绘制3D散点图

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
      
      
    def randrange(n, vmin, vmax):
     '''''
     Helper function to make an array of random numbers having shape (n, )
     with each number distributed Uniform(vmin, vmax).
     '''
     return (vmax - vmin)*np.random.rand(n) + vmin
      
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
      
    n = 100
      
    # For each set of style and range settings, plot n random points in the box
    # defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].
    for c, m, zlow, zhigh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]:
     xs = randrange(n, 23, 32)
     ys = randrange(n, 0, 100)
     zs = randrange(n, zlow, zhigh)
     ax.scatter(xs, ys, zs, c=c, marker=m)
      
    ax.set_xlabel('X Label')
    ax.set_ylabel('Y Label')
    ax.set_zlabel('Z Label')
      
    plt.show()

    绘制结果如下:

    8、绘制3D文字

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
      
      
    fig = plt.figure()
    ax = fig.gca(projection='3d')
      
    # Demo 1: zdir
    zdirs = (None, 'x', 'y', 'z', (1, 1, 0), (1, 1, 1))
    xs = (1, 4, 4, 9, 4, 1)
    ys = (2, 5, 8, 10, 1, 2)
    zs = (10, 3, 8, 9, 1, 8)
      
    for zdir, x, y, z in zip(zdirs, xs, ys, zs):
     label = '(%d, %d, %d), dir=%s' % (x, y, z, zdir)
     ax.text(x, y, z, label, zdir)
      
    # Demo 2: color
    ax.text(9, 0, 0, "red", color='red')
      
    # Demo 3: text2D
    # Placement 0, 0 would be the bottom left, 1, 1 would be the top right.
    ax.text2D(0.05, 0.95, "2D Text", transform=ax.transAxes)
      
    # Tweaking display region and labels
    ax.set_xlim(0, 10)
    ax.set_ylim(0, 10)
    ax.set_zlim(0, 10)
    ax.set_xlabel('X axis')
    ax.set_ylabel('Y axis')
    ax.set_zlabel('Z axis')
      
    plt.show(

    绘制结果如下:

    9、3D条状图

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    from mpl_toolkits.mplot3d import Axes3D
    import matplotlib.pyplot as plt
    import numpy as np
      
    fig = plt.figure()
    ax = fig.add_subplot(111, projection='3d')
    for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]):
     xs = np.arange(20)
     ys = np.random.rand(20)
      
     # You can provide either a single color or an array. To demonstrate this,
     # the first bar of each set will be colored cyan.
     cs = [c] * len(xs)
     cs[0] = 'c'
     ax.bar(xs, ys, zs=z, zdir='y', color=cs, alpha=0.8)
      
    ax.set_xlabel('X')
    ax.set_ylabel('Y')
    ax.set_zlabel('Z')
      
    plt.show()

    绘制结果如下:

    以上所述是小编给大家介绍的python绘制3D图形,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持

  • 相关阅读:
    大型高并发高负载网站的系统架构(转)
    亿级数据的高并发通用搜索引擎架构设计(转-张宴)
    VMware12版虚拟机怎么安装win7系统(详细教程
    Linux-CentOS7 安装VMware Workstation 12
    IntelliJ IDEA 12创建Maven管理的Java Web项目(图解)
    idea 创建maven工程(入门)
    SQL中inner join、outer join和cross join的区别
    OLTP和OLAP有何区别?
    HAWQ 官方文档创建filespace,tablespace,database,table
    DQL、DML、DDL、DCL的概念与区别
  • 原文地址:https://www.cnblogs.com/gisoracle/p/12025291.html
Copyright © 2011-2022 走看看