作者:gnuhpc
出处:http://www.cnblogs.com/gnuhpc/
#include <cv.h> #include <cxcore.h> #include <highgui.h> #include <stdio.h> const int MAX_CORNERS = 500; int main(int argc, char** argv) { // Initialize, load two images from the file system, and // allocate the images and other structures we will need for // results. // IplImage* imgA = cvLoadImage("OpticalFlow0.jpg",CV_LOAD_IMAGE_GRAYSCALE); IplImage* imgB = cvLoadImage("OpticalFlow1.jpg",CV_LOAD_IMAGE_GRAYSCALE); CvSize img_sz = cvGetSize( imgA ); int win_size = 10; IplImage* imgC = cvLoadImage("OpticalFlow1.jpg",CV_LOAD_IMAGE_UNCHANGED); // The first thing we need to do is get the features // we want to track. // IplImage* eig_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 ); IplImage* tmp_image = cvCreateImage( img_sz, IPL_DEPTH_32F, 1 ); int corner_count = MAX_CORNERS; CvPoint2D32f* cornersA = new CvPoint2D32f[ MAX_CORNERS ]; cvGoodFeaturesToTrack( imgA,//the input image eig_image,//temp image whose result is meaningful tmp_image,//temp image cornersA,//contains the result points &corner_count,//the maximum number of points 0.01,//indicates the minimal acceptable lower eigenvalue for a point to be included as a corner 5.0,//guarantees that no two returned points are within the indicated number of pixels. 0,//no mask is used 3,// the region around a given pixel that is considered when computing the autocorrelation matrix of derivatives. 0,//use the the Shi-Tomasi deinition 0.04 ); /* Further find more accurate points */ cvFindCornerSubPix( imgA, cornersA, corner_count, cvSize(win_size,win_size), cvSize(-1,-1), cvTermCriteria(CV_TERMCRIT_ITER|CV_TERMCRIT_EPS,20,0.03) ); // Call the Lucas Kanade algorithm // char features_found[ MAX_CORNERS ]; float feature_errors[ MAX_CORNERS ]; CvSize pyr_sz = cvSize( imgA->width+8, imgB->height/3 ); IplImage* pyrA = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 ); IplImage* pyrB = cvCreateImage( pyr_sz, IPL_DEPTH_32F, 1 ); CvPoint2D32f* cornersB = new CvPoint2D32f[ MAX_CORNERS ]; cvCalcOpticalFlowPyrLK( imgA, imgB, pyrA, pyrB, cornersA, cornersB, corner_count, cvSize( win_size,win_size ), 5, features_found, feature_errors, cvTermCriteria( CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, .3 ), 0 ); // Now make some image of what we are looking at: // for( int i=0; i<corner_count; i++ ) { if( features_found[i]==0|| feature_errors[i]>550 ) { // printf("Error is %f/n",feature_errors[i]); continue; } // printf("Got it/n"); CvPoint p0 = cvPoint( cvRound( cornersA[i].x ), cvRound( cornersA[i].y ) ); CvPoint p1 = cvPoint( cvRound( cornersB[i].x ), cvRound( cornersB[i].y ) ); cvLine( imgC, p0, p1, CV_RGB(255,0,0),2 ); } cvNamedWindow("ImageA",0); cvNamedWindow("ImageB",0); cvNamedWindow("LKpyr_OpticalFlow",0); cvSaveImage("result_LK.jpg",imgC); cvShowImage("ImageA",imgA); cvShowImage("ImageB",imgB); cvShowImage("LKpyr_OpticalFlow",imgC); cvWaitKey(0); return 0; }