zoukankan      html  css  js  c++  java
  • [LeetCode] Arranging Coins 排列硬币

    You have a total of n coins that you want to form in a staircase shape, where every k-th row must have exactly k coins.

    Given n, find the total number of full staircase rows that can be formed.

    n is a non-negative integer and fits within the range of a 32-bit signed integer.

    Example 1:

    n = 5
    
    The coins can form the following rows:
    ¤
    ¤ ¤
    ¤ ¤
    
    Because the 3rd row is incomplete, we return 2.
    

    Example 2:

    n = 8
    
    The coins can form the following rows:
    ¤
    ¤ ¤
    ¤ ¤ ¤
    ¤ ¤
    
    Because the 4th row is incomplete, we return 3.
    

    这道题给了我们n个硬币,让我们按一定规律排列,第一行放1个,第二行放2个,以此类推,问我们有多少行能放满。通过分析题目中的例子可以得知最后一行只有两种情况,放满和没放满。由于是按等差数列排放的,我们可以快速计算出前i行的硬币总数。我们先来看一种O(n)的方法,非常简单粗暴,就是从第一行开始,一行一行的从n中减去,如果此时剩余的硬币没法满足下一行需要的硬币数了,我们之间返回当前行数即可,参见代码如下:

    解法一:

    class Solution {
    public:
        int arrangeCoins(int n) {
            int cur = 1, rem = n - 1;
            while (rem >= cur + 1) {
                ++cur;
                rem -= cur;
            }
            return n == 0 ? 0 : cur;
        }
    };

    再来看一种O(lgn)的方法,用到了二分搜索法,我们搜索前i行之和刚好大于n的临界点,这样我们减一个就是能排满的行数,注意我们计算前i行之和有可能会整型溢出,所以我们需要将变量都定义成长整型,参见代码如下:

    解法二:

    class Solution {
    public:
        int arrangeCoins(int n) {
            if (n <= 1) return n;
            long low = 1, high = n;
            while (low < high) {
                long mid = low + (high - low) / 2;
                if (mid * (mid + 1) / 2 <= n) low = mid + 1;
                else high = mid;
            }
            return low - 1;
        }
    };

    再来看一种数学解法O(1),充分利用了等差数列的性质,我们建立等式, n = (1 + x) * x / 2, 我们用一元二次方程的求根公式可以得到 x = (-1 + sqrt(8 * n + 1)) / 2, 然后取整后就是能填满的行数,一行搞定简直丧心病狂啊:

    解法三:

    class Solution {
    public:
        int arrangeCoins(int n) {
            return (int)((-1 + sqrt(1 + 8 * (long)n)) / 2);
        }
    };

    参考资料:

    https://discuss.leetcode.com/topic/65664/my-55ms-c-solution

    https://discuss.leetcode.com/topic/65575/java-o-1-solution-math-problem

    https://discuss.leetcode.com/topic/65631/c-three-solutions-o-n-o-logn-o-1/2

    LeetCode All in One 题目讲解汇总(持续更新中...)

  • 相关阅读:
    开发技术--Numpy模块
    开发技术-IPython介绍
    开发--Deepin系统安装
    开发--CentOS-7安装及配置
    开发技术--设计模式
    English--音标重难点
    English--音标拼读
    English--辅音
    jQuery火箭图标返回顶部代码
    jQuery火箭图标返回顶部代码
  • 原文地址:https://www.cnblogs.com/grandyang/p/6026066.html
Copyright © 2011-2022 走看看