顺序表是用一段地址连续的存储单元依次存储数据元素的线性结构。顺序表可分为静态存储和动态存储,静态顺序表比较简单,数据空间固定,而动态顺序表可以动态增容,便于存放大量数据,现主要把动态的基本实现一下~此处的排序简单实现了一下,后面会整理出各种排序~~
#define MAX_SIZE 100
#define INIT_SIZE 3
typedef int DataType;
//顺序表的静态存储
typedef struct SeqList_s
{
DataType array[MAX_SIZE]; //数据段
size_t size; //数据的个数
}SeqList_s;
//顺序表的动态存储
typedef struct SeqList_d
{
DataType* array; //数据块指针
size_t size; //有效数据的个数
size_t capacity; //容量
}SeqList_d;
//检查容量,增容
void CheckCapacity(SeqList_d *pSeq)
{
assert(pSeq);
DataType* temp;
if (pSeq->size >= pSeq->capacity)
{
pSeq->capacity *= 2; //容量增至2倍
temp = (DataType*)realloc(pSeq->array, pSeq->capacity*sizeof(DataType));
if (NULL == temp)
{
return;//如果没有增容成功,返回
}
pSeq->array = temp;
}
else
{
return;
}
}
//初始化
int InitSeqList_d(SeqList_d* pSeq)
{
assert(pSeq);
pSeq->array = (DataType*)malloc(sizeof(DataType)*INIT_SIZE);
if (NULL == pSeq)
{
return 0; //未成功
}
pSeq->size = 0;
pSeq->capacity = INIT_SIZE;
return 1;
}
//查找
size_t Find(SeqList_d* pSeq, DataType x)
{
assert(pSeq);
size_t pos = pSeq->size; //用pos记录x所在位置,若大于等于size,则说明未找到
for (size_t i = 0; i < pSeq->size; i++)
{
if (*(pSeq->array + i) == x)
{
pos = i;
break;
}
}
if (pos >= pSeq->size)
{
printf("未找到 ");
}
return pos;
}
//尾插
void PushBack(SeqList_d* pSeq, DataType x)
{
assert(pSeq != NULL);
CheckCapacity(pSeq);
pSeq->array[pSeq->size++] = x;
}
//插入
void Insert(SeqList_d* pSeq, size_t pos, DataType x)
{
assert(pSeq);
CheckCapacity(pSeq);
if (pos > pSeq->size)
{
printf("插入位置有误! ");
return;
}
DataType* temp = pSeq->array + pSeq->size - 1;
while (temp >= (pSeq->array + pos))
{
*(temp + 1) = temp;
temp--;
}
////也可以这样移动
//for (size_t i = pSeq->size - 1; i >= pos; i--)
//{
// pSeq->array[i+1] = pSeq->array[i];
//}
*(pSeq->array + pos) = x;
pSeq->size++;
}
//删除pos位置的数据
void Erase(SeqList_d* pSeq, size_t pos)
{
assert(pSeq);
if (pos < 0 || pos >= pSeq->size)
{
printf("要删除的位置有误! ");
return;
}
for (size_t i = pos; i < pSeq->size; i++)
{
*(pSeq->array + i) = *(pSeq->array + i + 1);
}
pSeq->size--;
}
//删除找到的第一个x
void Remove(SeqList_d* pSeq, DataType x)
{
assert(pSeq);
size_t pos = Find(pSeq, x);
if (pos < 0 || pos >= pSeq->size)
{
printf("没有x这个数据! ");
return;
}
else
{
for (size_t i = pos; i < pSeq->size; i++)
{
*(pSeq->array + i) = *(pSeq->array + i + 1);
}
pSeq->size--;
}
}
//删除所有的x(有优化)
void RemoveAll(SeqList_d* pSeq, DataType x)
{
assert(pSeq);
size_t first = 0, second = 0, count = 0;
while (second < pSeq->size)
{
if (*(pSeq->array + second) == x)
{
count++;
}
else
{
*(pSeq->array + first) = *(pSeq->array + second);
first++;
}
second++;
}
pSeq->size -= count;
}
用second指针遍历顺序表,用first指针记录删除后的顺序表。
当second指针不是指向所要删除的数据3时,second指向的数据赋给first指向的数据,first指针和second指针同时向后指;
当second指针指向所要删除的数据3时,first指针不动,count计数加1,second指针继续向后指。
这样就把数据删除了~~~这种方法比找到一个就挪动一次顺序表要高效一些。。。
//排序(从小到大)
void Sort(SeqList_d* pSeq)
{
assert(pSeq);
if (pSeq->size <= 0)
{
return;
}
DataType temp;
bool flag = true;
for (size_t i = 0; (i < pSeq->size - 1) && flag; i++) //进行size-1趟排序
{
flag = false;
for (size_t j = 0; j < pSeq->size - i - 1; j++)
{
if (*(pSeq->array + j) > *(pSeq->array + j + 1))
{
temp = *(pSeq->array + j);
*(pSeq->array + j) = *(pSeq->array + j + 1);
*(pSeq->array + j + 1) = temp;
flag = true;
}
}
}
}
//二分查找(非递归)
int BinarySearch(SeqList_d* pSeq, DataType x)
{
assert(pSeq);
int left = 0, right = pSeq->size - 1;
int mid;
while (left <= right)
{
mid = left + (right - left) / 2; //这样算mid可以避免溢出
if (*(pSeq->array + mid) < x) //x在后边部分
{
left = mid + 1;
}
else if (*(pSeq->array + mid) > x) //x在前半部分
{
right = mid - 1;
}
else
{
return mid;
break;
}
}
return -1;
}
//二分查找(递归)
int _BinarySearch_R(SeqList_d* pSeq, int left, int right, DataType x)
{
assert(pSeq);
if (left <= right)
{
int mid = left + (right - left) / 2;
if (pSeq->array[mid] < x)
{
return _BinarySearch_R(pSeq, mid + 1, right, x);
}
else if (pSeq->array[mid] > x)
{
return _BinarySearch_R(pSeq, left, mid - 1, x);
}
else
{
return mid;
}
}
return -1;
}
int Binary_R(SeqList_d* pSeq, DataType x)
{
return _BinarySearch_R(pSeq, 0, pSeq->size - 1, x);
}