zoukankan      html  css  js  c++  java
  • .net 5.0

    NuGet安装
    Microsoft.AspNetCore.Session
    Microsoft.AspNetCore.Http.Extensions
    Startup.cs中注册
    // 添加一个内存缓存
    services.AddDistributedMemoryCache();
    services.AddSession(options =>
    {
        // 设置10秒钟Session过期来测试
        options.IdleTimeout = TimeSpan.FromSeconds(10);
        options.Cookie.HttpOnly = true;
    });
    
    app.UseSession();
    Controller中使用Session
    HttpContext.Session.SetString("param", str);
    string value = HttpContext.Session.GetString("param");
    非Controller中使用Session
    public class SessionTestClass
    {
        private readonly IHttpContextAccessor _httpContextAccessor;
        private ISession _session => _httpContextAccessor.HttpContext.Session;
    
        public SomeOtherClass(IHttpContextAccessor httpContextAccessor)
        {
            _httpContextAccessor = httpContextAccessor;
        }
    
        public void Set()
        {
            _session.SetString("code", "123456");
        }
    
        public void Get()
        {
            string code = _session.GetString("code");
        }
    }
     ISession的扩展,存储复杂对象
    public static class SessionExtensions
    {
        public static void SetObjectAsJson(this ISession session, string key, object value)
        {
            session.SetString(key, JsonConvert.SerializeObject(value));
        }
    
        public static T GetObjectFromJson<T>(this ISession session, string key)
        {
            var value = session.GetString(key);
    
            return value == null ? default(T) : JsonConvert.DeserializeObject<T>(value);
        }
    }
    

     使用范例:

    var myTestObject = new MyTestClass();
    HttpContext.Session.SetObjectAsJson("SessionTest", myTestObject);
    var myComplexObject = HttpContext.Session.GetObjectFromJson<MyClass>("SessionTest");
  • 相关阅读:
    epii.js简约而不简单的JS模板引擎
    Acwing 165. 小猫爬山
    《将博客搬家到csdn》
    Tourism【codeforces 1200E】
    Middle-Out【codeforces 1231E】(字符串匹配问题)
    super_log (广义欧拉降幂)(2019南京网络赛)
    Different Circle Permutation (HDU
    Knapsack Cryptosystem(状压dp)
    Quadratic equation(二次剩余定理)
    分级(线性dp)
  • 原文地址:https://www.cnblogs.com/gygtech/p/14669253.html
Copyright © 2011-2022 走看看