zoukankan      html  css  js  c++  java
  • 902. Numbers At Most N Given Digit Set

    We have a sorted set of digits D, a non-empty subset of {'1','2','3','4','5','6','7','8','9'}.  (Note that '0' is not included.)

    Now, we write numbers using these digits, using each digit as many times as we want.  For example, if D = {'1','3','5'}, we may write numbers such as '13', '551', '1351315'.

    Return the number of positive integers that can be written (using the digits of D) that are less than or equal to N.

    Example 1:

    Input: D = ["1","3","5","7"], N = 100
    Output: 20
    Explanation: 
    The 20 numbers that can be written are:
    1, 3, 5, 7, 11, 13, 15, 17, 31, 33, 35, 37, 51, 53, 55, 57, 71, 73, 75, 77.
    

    Example 2:

    Input: D = ["1","4","9"], N = 1000000000
    Output: 29523
    Explanation: 
    We can write 3 one digit numbers, 9 two digit numbers, 27 three digit numbers,
    81 four digit numbers, 243 five digit numbers, 729 six digit numbers,
    2187 seven digit numbers, 6561 eight digit numbers, and 19683 nine digit numbers.
    In total, this is 29523 integers that can be written using the digits of D.

    Note:

    1. D is a subset of digits '1'-'9' in sorted order.
    2. 1 <= N <= 10^9

    Approach #1: Math. [C++]

    class Solution {
    public:
        int atMostNGivenDigitSet(vector<string>& D, int N) {
            string s = to_string(N);
            int n = s.length();
            int ans = 0;
            for (int i = 1; i < n; ++i) 
                ans += pow(D.size(), i);
            for (int i = 0; i < n; ++i) {
                bool prefix = false;
                for (string d : D) {
                    if (d[0] < s[i]) {
                        ans += pow(D.size(), n-i-1);
                    } else if (d[0] == s[i]) {
                        prefix = true;
                        break;
                    }
                }
                
                if (!prefix) return ans;
            }
            
            return ans + 1;
        }
    };
    

      

    Reference:

    https://zxi.mytechroad.com/blog/math/leetcode-902-numbers-at-most-n-given-digit-set/

    永远渴望,大智若愚(stay hungry, stay foolish)
  • 相关阅读:
    MySQL之存储引擎
    MySQL之基础功能
    MySQL之正则表达式
    MySQL之数据类型
    MySQL之多表查询
    MySQL之单表查询
    linux命令useradd添加用户详解
    MySQL之数据操作
    MySQL之表操作
    MySQL之库操作
  • 原文地址:https://www.cnblogs.com/h-hkai/p/10592258.html
Copyright © 2011-2022 走看看