The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return the number of distinct solutions to the n-queens puzzle.
Example:
Input: 4 Output: 2 Explanation: There are two distinct solutions to the 4-queens puzzle as shown below. [ [".Q..", // Solution 1 "...Q", "Q...", "..Q."], ["..Q.", // Solution 2 "Q...", "...Q", ".Q.."] ]
AC code:
class Solution { public: int totalNQueens(int n) { int res = 0; vector<vector<string>> v; vector<string> nqueens(n, string(n, '.')); solve(v, nqueens, n, 0, res); return res; } void solve(vector<vector<string>>& v, vector<string>& nqueens, int n, int row, int& res) { if (row == n) { res++; return; } for (int col = 0; col < n; ++col) { if (judge(nqueens, n, row, col)) { nqueens[row][col] = 'Q'; solve(v, nqueens, n, row+1, res); nqueens[row][col] = '.'; } } } bool judge(vector<string> nqueens, int n, int x, int y) { // up and down for (int i = 0; i < n && i != x; ++i) { if (nqueens[i][y] == 'Q') return false; } // right and left for (int i = 0; i < n && i != y; ++i) { if (nqueens[x][i] == 'Q') return false; } // left up for (int i = x-1, j = y-1; i >= 0 && j >= 0; --i, --j) { if (nqueens[i][j] == 'Q') return false; } // right up for (int i = x-1, j = y+1; i >= 0 && j < n; --i, ++j) { if (nqueens[i][j] == 'Q') return false; } return true; } };
Runtime: 16 ms, faster than 7.86% of C++ online submissions for N-Queens II.