zoukankan      html  css  js  c++  java
  • 1369

    1369 - Answering Queries
    Time Limit: 3 second(s) Memory Limit: 32 MB

    The problem you need to solve here is pretty simple. You are give a function f(A, n), where A is an array of integers and n is the number of elements in the array. f(A, n) is defined as follows:

    long long f( int A[], int n ) { // n = size of A

        long long sum = 0;

        for( int i = 0; i < n; i++ )

            for( int j = i + 1; j < n; j++ )

                sum += A[i] - A[j];

        return sum;

    }

    Given the array A and an integer n, and some queries of the form:

    1)      0 x v (0 ≤ x < n, 0 ≤ v ≤ 106), meaning that you have to change the value of A[x] to v.

    2)      1, meaning that you have to find f as described above.

    Input

    Input starts with an integer T (≤ 5), denoting the number of test cases.

    Each case starts with a line containing two integers: n and q (1 ≤ n, q ≤ 105). The next line contains n space separated integers between 0 and 106 denoting the array A as described above.

    Each of the next q lines contains one query as described above.

    Output

    For each case, print the case number in a single line first. Then for each query-type "1" print one single line containing the value of f(A, n).

    Sample Input

    Output for Sample Input

    1

    3 5

    1 2 3

    1

    0 0 3

    1

    0 2 1

    1

    Case 1:

    -4

    0

    4

    题解:我的思路本来是针对每次的修改,都在询问里面找值,不出意外肯定超时了,出来看了大神的题解,是针对每次修改再修改sum就妥了,比赛的时候就没想到。。。

    代码:

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<cmath>
     5 #include<algorithm>
     6 #define mem(x,y) memset(x,y,sizeof(x))
     7 using namespace std;
     8 const int INF=0x3f3f3f3f;
     9 const int MAXN=1e5+100;
    10 typedef long long LL;
    11 LL a[MAXN],b[MAXN];
    12 int main(){
    13     int T,n,q,cnt=0;
    14     scanf("%d",&T);
    15     while(T--){
    16         scanf("%d%d",&n,&q);
    17         LL sum=0;
    18         for(int i=0;i<n;i++)scanf("%lld",a+i);
    19         sum=0;
    20         for(int i=n-1;i>=1;i--)sum+=a[i],b[i-1]=sum;
    21                 //for(int i=0;i<n;i++)printf("%d ",b[i]);puts("");
    22         b[n-1]=0;
    23         sum=0;
    24         for(int i=0;i<n-1;i++)sum+=(a[i]*(n-i-1)-b[i]);
    25         mem(b,0);
    26         printf("Case %d:
    ",++cnt);
    27         while(q--){
    28             int t,x,v;
    29             scanf("%d",&t);
    30             if(t){
    31                 printf("%lld
    ",sum);
    32                 }
    33             else{
    34                 scanf("%d%d",&x,&v);
    35                 sum=sum+(v-a[x])*(n-x-1)-x*(v-a[x]);
    36                 a[x]=v;
    37             }
    38         }
    39     }
    40     return 0;
    41 }
  • 相关阅读:
    电商系统服务拆分实战
    打通电商多模式支持的“任督二脉”
    win10 home安装docker快速攻略
    如何深入理解一套MQ消息中间件
    自带win10的笔记本电脑如何装win7
    《大数据日知录:架构与算法》读书笔记(多图)
    一个典型的后台软件系统的设计复盘——(三)打通任督二脉-context
    一个典型的后台软件系统的设计复盘——(二)如何id一个事物
    dubbox源码分析(一)-服务的启动与初始化
    svn老鸟转用git必须理解的概念
  • 原文地址:https://www.cnblogs.com/handsomecui/p/4947251.html
Copyright © 2011-2022 走看看