zoukankan      html  css  js  c++  java
  • Equal Cut

    Snuke has an integer sequence A of length N.

    He will make three cuts in A and divide it into four (non-empty) contiguous subsequences B,C,D and E. The positions of the cuts can be freely chosen.

    Let P,Q,R,S be the sums of the elements in B,C,D,E, respectively. Snuke is happier when the absolute difference of the maximum and the minimum among P,Q,R,S is smaller. Find the minimum possible absolute difference of the maximum and the minimum among P,Q,R,S.

    Constraints
    4≤N≤2×105
    1≤Ai≤109
    All values in input are integers.

    输入

    Input is given from Standard Input in the following format:

    N
    A1 A2 … AN

    输出

    Find the minimum possible absolute difference of the maximum and the minimum among P,Q,R,S.

    样例输入

    5
    3 2 4 1 2
    

    样例输出

    2
    

    提示

    If we divide A as B,C,D,E=(3),(2),(4),(1,2), then P=3,Q=2,R=4,S=1+2=3. Here, the maximum and the minimum among P,Q,R,S are 4 and 2, with the absolute difference of 2. We cannot make the absolute difference of the maximum and the minimum less than 2, so the answer is 2.

     
    //枚举中点位置 再根据中点位置 贪心l,r的位置 代码如下 参考:https://blog.csdn.net/aaakirito/article/details/80884168?utm_source=blogxgwz5
    #include <bits/stdc++.h>
    
    using namespace std;
    typedef long long ll;
    inline ll read(){
        ll x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    const int maxn = 200005;
    const ll inf = 0x7fffffff;
    ll a[maxn];
    ll sum[maxn];
    int main()
    {
       // cout<<inf<<endl;
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            a[i]=read();
            sum[i]+=sum[i-1]+a[i];
        }
        int l=1,r=3;
        ll minn = inf;
        for(int i=2;i<n-1;i++)
        {
            while(l<i&&abs((sum[i]-sum[l])-(sum[l]-sum[0]))>=abs((sum[i]-sum[l+1])-(sum[l+1]-sum[0])))
            {
                l++;
            }
            while(r<n&&abs((sum[r]-sum[i])-(sum[n]-sum[r]))>abs((sum[r+1]-sum[i])-(sum[n]-sum[r+1])))
            {
                r++;
            }
            ll x,y,p,q;
            x=sum[i]-sum[l];
            y=sum[l]-sum[0];
            p=sum[r]-sum[i];
            q=sum[n]-sum[r];
            minn = min(minn,max(x,max(p,max(y,q)))-min(x,min(y,min(p,q))));
        }
        printf("%lld
    ",minn);
    }
  • 相关阅读:
    3-12 初识JWT
    3-11 用户登录信息验证实现
    3-10 公共模块统一测试
    3-9 公共业务异常统一处理
    3-8 公共返回对象封装
    3-7 公共请求对象封装及优雅验证数据实现
    3-6 MD5介绍及用户添加功能实现
    3-5 用户模块数据层构建
    3-4 用户模块构建
    3-3 公共工具模块构建
  • 原文地址:https://www.cnblogs.com/hao-tian/p/10086656.html
Copyright © 2011-2022 走看看