zoukankan      html  css  js  c++  java
  • Equal Cut

    Snuke has an integer sequence A of length N.

    He will make three cuts in A and divide it into four (non-empty) contiguous subsequences B,C,D and E. The positions of the cuts can be freely chosen.

    Let P,Q,R,S be the sums of the elements in B,C,D,E, respectively. Snuke is happier when the absolute difference of the maximum and the minimum among P,Q,R,S is smaller. Find the minimum possible absolute difference of the maximum and the minimum among P,Q,R,S.

    Constraints
    4≤N≤2×105
    1≤Ai≤109
    All values in input are integers.

    输入

    Input is given from Standard Input in the following format:

    N
    A1 A2 … AN

    输出

    Find the minimum possible absolute difference of the maximum and the minimum among P,Q,R,S.

    样例输入

    5
    3 2 4 1 2
    

    样例输出

    2
    

    提示

    If we divide A as B,C,D,E=(3),(2),(4),(1,2), then P=3,Q=2,R=4,S=1+2=3. Here, the maximum and the minimum among P,Q,R,S are 4 and 2, with the absolute difference of 2. We cannot make the absolute difference of the maximum and the minimum less than 2, so the answer is 2.

     
    //枚举中点位置 再根据中点位置 贪心l,r的位置 代码如下 参考:https://blog.csdn.net/aaakirito/article/details/80884168?utm_source=blogxgwz5
    #include <bits/stdc++.h>
    
    using namespace std;
    typedef long long ll;
    inline ll read(){
        ll x=0,f=1;char ch=getchar();
        while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
        while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
        return x*f;
    }
    const int maxn = 200005;
    const ll inf = 0x7fffffff;
    ll a[maxn];
    ll sum[maxn];
    int main()
    {
       // cout<<inf<<endl;
        int n;
        scanf("%d",&n);
        for(int i=1;i<=n;i++)
        {
            a[i]=read();
            sum[i]+=sum[i-1]+a[i];
        }
        int l=1,r=3;
        ll minn = inf;
        for(int i=2;i<n-1;i++)
        {
            while(l<i&&abs((sum[i]-sum[l])-(sum[l]-sum[0]))>=abs((sum[i]-sum[l+1])-(sum[l+1]-sum[0])))
            {
                l++;
            }
            while(r<n&&abs((sum[r]-sum[i])-(sum[n]-sum[r]))>abs((sum[r+1]-sum[i])-(sum[n]-sum[r+1])))
            {
                r++;
            }
            ll x,y,p,q;
            x=sum[i]-sum[l];
            y=sum[l]-sum[0];
            p=sum[r]-sum[i];
            q=sum[n]-sum[r];
            minn = min(minn,max(x,max(p,max(y,q)))-min(x,min(y,min(p,q))));
        }
        printf("%lld
    ",minn);
    }
  • 相关阅读:
    Oracle 添加主键和索引
    Oracle中查询主键、外键、sequence、表基本信息等
    Spring工作原理
    Ehcache 缓存使用
    socket编程-java
    oracle触发器详解
    单例模式的几种写法
    [LeetCode] 412. Fizz Buzz 嘶嘶嗡嗡
    LeetCode Top Interview Questions
    [LeetCode] 131. Palindrome Partitioning 回文分割
  • 原文地址:https://www.cnblogs.com/hao-tian/p/10086656.html
Copyright © 2011-2022 走看看