zoukankan      html  css  js  c++  java
  • Scout YYF I (概率+矩阵快速幂)

    YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate into the enemy's base. After overcoming a series difficulties, YYF is now at the start of enemy's famous "mine road". This is a very long road, on which there are numbers of mines. At first, YYF is at step one. For each step after that, YYF will walk one step with a probability of p, or jump two step with a probality of 1- p. Here is the task, given the place of each mine, please calculate the probality that YYF can go through the "mine road" safely.

    Input

    The input contains many test cases ended with EOF
    Each test case contains two lines. 
    The First line of each test case is N (1 ≤ N ≤ 10) and p (0.25 ≤ p ≤ 0.75) seperated by a single blank, standing for the number of mines and the probability to walk one step. 
    The Second line of each test case is N integer standing for the place of N mines. Each integer is in the range of [1, 100000000].

    Output

    For each test case, output the probabilty in a single line with the precision to 7 digits after the decimal point.

    Sample Input

    1 0.5
    2
    2 0.5
    2 4

    Sample Output

    0.5000000
    0.2500000


    题意:一条长路有 N (1 ≤ N ≤ 10)颗地雷,一个人走一步的概率是 p ,走两步的概率是 (1-p) ,然后给出 N 颗地雷的位置 ,问这个人安全走过所有地雷的概率是多少

    题解:对于一个位置x,设能走到的概率是 P(x) ,那么 P(x) = P(x-1)*p + P(x-2)*(1-p) 这个数x可能很大,所以需要矩阵快速幂
    然后将整个的路看成由地雷分割的 N 段路
    [0 -- x1]
    [x1+1 -- x2]
    [x2+1 -- x3]
    ... ...
    所以,他能安全过去的概率就是 N 段都能过去的连乘
     1 #include <iostream>
     2 #include <stdio.h>
     3 #include <algorithm>
     4 using namespace std;
     5 #define MAXN 12
     6 
     7 int n;
     8 double p;
     9 int bomb[MAXN];
    10 
    11 double base[2][2];
    12 double res[2][2];
    13 
    14 //[ p(x)   ]  =  [ p , 1-p ]^(x-1)  * [ 1 ]
    15 //[ p(x-1) ]     [ 1 , 0   ]          [ 0 ]
    16 void quick_mi(int x)
    17 {
    18     double tp[2][2];
    19     while (x)
    20     {
    21         if (x%2==1)
    22         {
    23             for (int i=0;i<2;i++)
    24                  for (int j=0;j<2;j++)
    25                 {
    26                     tp[i][j]=0;
    27                     for (int k=0;k<2;k++)
    28                         tp[i][j]+=res[i][k]*base[k][j];
    29                 }
    30             for (int i=0;i<2;i++)
    31                 for (int j=0;j<2;j++)
    32                 res[i][j]=tp[i][j];
    33         }
    34         for (int i=0;i<2;i++)
    35             for (int j=0;j<2;j++)
    36             {
    37                 tp[i][j]=0;
    38                 for (int k=0;k<2;k++)
    39                     tp[i][j]+=base[i][k]*base[k][j];
    40             }
    41         for (int i=0;i<2;i++)
    42             for (int j=0;j<2;j++)
    43                 base[i][j]=tp[i][j];
    44         x/=2;
    45     }
    46 }
    47 
    48 double Mi(int x)//处于位置1踩到位置 x 的概率
    49 {
    50     if (x==0) return 0;
    51     base[0][0]=p,base[0][1]=1.0-p;
    52     base[1][0]=1,base[1][1]=0;
    53     res[0][0]=1;res[0][1]=0;
    54     res[1][0]=0;res[1][1]=1;
    55     quick_mi(x-1);
    56     return res[0][0];
    57 }
    58 
    59 int main()
    60 {
    61     while (scanf("%d%lf",&n,&p)!=EOF)
    62     {
    63         for (int i=0;i<n;i++)
    64             scanf("%d",&bomb[i]);
    65         sort(bomb,bomb+n);
    66 
    67         double xxx=Mi(bomb[0]);     //死了的概率
    68         double ans = 1.0-xxx;       //没死
    69         for (int i=1;i<n;i++)
    70         {
    71             xxx =Mi(bomb[i]-bomb[i-1]); //化简后
    72             ans *= (1.0-xxx);
    73         }
    74         printf("%.7lf
    ",ans);
    75     }
    76     return 0;
    77 }
    View Code



  • 相关阅读:
    SQL SERVER常用的统计用法
    SQL SERVER将多行数据合并成一行(转载)
    RabbitMQ安装与搭建
    CentOS 配置vncserver
    sql server2008禁用远程连接
    CentOS系统常用命令
    CentOS系统配置redis
    CentOS系统配置solr
    利用Warensoft Stock Service编写高频交易软件--客户端驱动接口说明
    蛙人高频交易拆单策略—蛙人高频软件结构及使用说明
  • 原文地址:https://www.cnblogs.com/haoabcd2010/p/6700730.html
Copyright © 2011-2022 走看看