题目大意
给出一个无向图,求出最小生成树,如果该图不连通,则输出orz。
概念
对于一个无向图,要求选出一些边,使得图上的每一个节点互相连通,且边权和最小。选出的边与节点形成的子图必然是颗树,这棵树叫做最小生成树。
Prim算法
原理
最小生成树中,除根节点外,每一个节点作为一个to节点与它相邻的边的边权(以后简称最小相邻边权)必然是最小的。
实现方法
邻接表
像Dijkstra一样,用一个priority_queue维护已访问的边,使得堆顶的边的边权是最小的。每次循环给出一条边cur,如果cur->to节点不在树中,则cur的权值便是cur->to的最小相邻边权。于是将cur->to节点纳入树中并记录结果。然后,由to节点扩展与它相邻的边e(e->to也不在树内)。
邻接矩阵
对于稠密图,用邻接表的方式还要维护一个堆,时间太慢。所以定义LowLen[u]为u节点目前搜索到的作为一个to节点与它相邻的边的边权的最小值。每次关于树内边的个数的cnt循环,将堆顶出来一条边改为枚举每一个不在树内的节点,找出LowLen[u]最小的u,此时的LowLen[u]便是u最小相邻边权。于是将u纳入树中,记录结果,然后通过u刷新与它相邻的树外节点的LowLen。
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#include <cmath>
//#define test
#define LOOP(a, b) for(int a=1;(a)<=(b);a++)
using namespace std;
const int MAX_NODE = 5010, MAX_EDGE = 200010 * 2, INF = 0x3f3f3f3f;
struct Prim
{
struct Node;
struct Edge;
struct Node
{
Edge *Head;
int Id;
bool Vis;
Node()
{
Head = NULL;
Vis = false;
Id = 0;
}
}_nodes[MAX_NODE];
int _vCount;
Node *Start;
struct Edge
{
Node *From, *To;
Edge *Next;
int Len, Id;
bool InGraph;
Edge()
{
From = To = NULL;
Next = NULL;
Len = Id = 0;
InGraph = false;
}
bool operator <(const Edge a)const
{
return Len > a.Len;
}
}_edges[MAX_EDGE];
int _eCount;
void Init(int vCount, int sId)
{
memset(_nodes, 0, sizeof(_nodes));
memset(_edges, 0, sizeof(_edges));
_vCount = vCount;
_eCount = 0;
Start = sId + _nodes;
}
Edge *NewEdge()
{
return ++_eCount + _edges;
}
void AddEdge(Node *from, Node *to, int len)
{
Edge *e = NewEdge();
e->Id = _eCount;
e->From = from;
e->To = to;
e->Len = len;
e->Next = e->From->Head;
e->From->Head = e;
}
void Build(int uId, int vId, int len)
{
Node *u = uId + _nodes, *v = vId + _nodes;
u->Id = uId;
v->Id = vId;
AddEdge(u, v, len);
AddEdge(v, u, len);
}
int Proceed()
{
int ans = 0, cnt = 0;
priority_queue<Edge> q;
Start->Vis = true;//易忘点
cnt++;//易忘点
for (Edge *e = Start->Head; e; e = e->Next)
q.push(*e);
while (!q.empty() && cnt<_vCount)//易忘点:小于
{
Edge temp = q.top();
q.pop();
Edge *cur = temp.Id + _edges;
if (cur->To->Vis)
continue;
cur->To->Vis = true;
cur->InGraph = true;
ans += cur->Len;
cnt++;
for (Edge *e = cur->To->Head; e; e = e->Next)
if (!e->To->Vis)
q.push(*e);
}
return cnt == _vCount ? ans : -1;
}
}g;
struct PrimMatrix
{
int Len[MAX_NODE][MAX_NODE];
bool InTree[MAX_NODE];
int LowLen[MAX_NODE];
int _vCount;
void Init(int vCount)
{
memset(Len, INF, sizeof(Len));
_vCount = vCount;
}
void Build(int u, int v, int dist)
{
Len[u][v] = Len[v][u] = min(Len[u][v], dist);
}
int Proceed()
{
int cnt = 1, ans = 0;
memset(InTree, false, sizeof(InTree));
memset(LowLen, INF, sizeof(LowLen));
InTree[1] = true;//易忘点
LOOP(v, _vCount)
LowLen[v] = Len[1][v];
LOOP(i, _vCount)
{
int u, lowLen = INF;
LOOP(j, _vCount)
{
if (!InTree[j] && LowLen[j] < lowLen)
{
lowLen = LowLen[j];
u = j;
}
}
if (lowLen == INF)
break;
cnt++;
ans += lowLen;
InTree[u] = true;
LOOP(v, _vCount)//注意从此往后就不用lowLen了。lowLen就是为了确定u用的。
if (!InTree[v] && Len[u][v] < LowLen[v])
LowLen[v] = Len[u][v];
}
return cnt == _vCount ? ans : -1;
}
}g1;
int main()
{
int totNode, totEdge, uId, vId, len;
scanf("%d%d", &totNode, &totEdge);
g1.Init(totNode);
while (totEdge--)
{
scanf("%d%d%d", &uId, &vId, &len);
g1.Build(uId, vId, len);
}
int ans = g1.Proceed();
if (ans == -1)
printf("orz
");
else
printf("%d
", ans);
return 0;
}