zoukankan      html  css  js  c++  java
  • yolov5单图片检测

    yolov5单图片检测

    import argparse
    import time
    from pathlib import Path
    
    import cv2
    import torch
    import torch.backends.cudnn as cudnn
    from numpy import random
    
    import numpy as np
    
    import requests
    from models.experimental import attempt_load
    
    from utils.datasets import LoadStreams,LoadStreams2, LoadImages,LoadWebcam,letterbox
    
    from utils.general import check_img_size, check_requirements, non_max_suppression, apply_classifier, scale_coords, 
        xyxy2xywh, strip_optimizer, set_logging, increment_path
    from utils.plots import plot_one_box
    from utils.torch_utils import select_device, load_classifier, time_synchronized
    
    
    device = select_device('')
    augment = False
    conf_thres=0.15
    iou_thres=0.25
    model = attempt_load('yolov5s.pt', map_location=device)
    img_size = 640
    
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
    
    
    def detectionObjectFunction():
        #vc = cv2.VideoCapture(2)
        #rval, frame = vc.read()
        #rval, cameraImg = vc.read()
        img_file = requests.get("http://182.61.200.6/pic/20210621/20210621161706340.jpg")
        cameraImg = cv2.imdecode(np.fromstring(img_file.content, np.uint8), 1)
        
        
        img = letterbox(cameraImg, new_shape=img_size)[0]
        # Convert
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)
    
        ####################################################
        img = torch.from_numpy(img).to(device)
        #img = img.half() if half else img.float()  # uint8 to fp16/32
        im0 = cameraImg.copy()
        
        img = img.half()
        img = img.float()
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
    
        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=augment)[0]
        #pred = model(img, augment=opt.augment)[0]
    
        #print('thres:%d '%conf_thres)
        # Apply NMS
        pred = non_max_suppression(pred, conf_thres, iou_thres)
        #def non_max_suppression(prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, labels=()):
        t2 = time_synchronized()
        
        # Apply Classifier
        
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            # batch_size >= 1
            #if webcam:  
            #    p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
            #else:
            #    p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
            #    
            #p = Path(p)  # to Path
            #save_path = str(save_dir / p.name)  # img.jpg
            #txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # img.txt
            #s += '%gx%g ' % img.shape[2:]  # print string
    
            # normalization gain whwh
            #gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
                
                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    #s += f'{n} {names[int(c)]}s, '  # add to string
        
                # Write results
                for *xyxy, conf, cls in reversed(det):
                    
                    
                    label = f'{names[int(cls)]} {conf:.2f}'
                    #plot_one_box2(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
                    #plot_one_box2(xyxy, im0, label=label, color=(0,255,0), line_thickness=2)
                    #plot_one_box(xyxy, im0, label=label, color=(0,255,0), line_thickness=2)
                    plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=2)
                
            # Print time (inference + NMS)
            print(f'detection time. ({t2 - t1:.3f}s)')
    
            # Stream results
            #if view_img:
            cv2.imshow("win1", im0)
            cv2.imwrite("2021062112.jpg",im0)
            #img2 = im0.copy()
                
    
    
            ####################################################
            #pass
    
    
    
    detectionObjectFunction()

    ################

    QQ 3087438119
  • 相关阅读:
    Oracle(00):PL/SQL嵌入SQL语句
    Oracle(00):CASE WHEN 用法
    Oracle(00):正则表达式
    Oracle(00):删除重复记录
    Oracle(00):PL/SQL块与表达式
    Oracle(00):PL/SQL复合类型
    Oracle(00):PL/SQL数据类型
    Oracle(00):rownum行号
    Oracle(00):递归查询connect by
    Oracle(00):Update语句
  • 原文地址:https://www.cnblogs.com/herd/p/14943266.html
Copyright © 2011-2022 走看看