zoukankan      html  css  js  c++  java
  • hdu3480 Division

    Problem Description
    Little D is really interested in the theorem of sets recently. There’s a problem that confused him a long time.  
    Let T be a set of integers. Let the MIN be the minimum integer in T and MAX be the maximum, then the cost of set T if defined as (MAX – MIN)^2. Now given an integer set S, we want to find out M subsets S1, S2, …, SM of S, such that



    and the total cost of each subset is minimal.
     

    Input
    The input contains multiple test cases.
    In the first line of the input there’s an integer T which is the number of test cases. Then the description of T test cases will be given. 
    For any test case, the first line contains two integers N (≤ 10,000) and M (≤ 5,000). N is the number of elements in S (may be duplicated). M is the number of subsets that we want to get. In the next line, there will be N integers giving set S.

     

    Output
    For each test case, output one line containing exactly one integer, the minimal total cost. Take a look at the sample output for format.

     

    Sample Input
    2 3 2 1 2 4 4 2 4 7 10 1
     

    Sample Output
    Case 1: 1 Case 2: 18
    题意:给你n个数字,要分成m个子集合,子集合之间可以共用相同的元素,子集合的代价为该集合最大的数和最小的数的差的平方,问你最小的子集合的总代价是多少。
    思路:因为集合里的数的顺序并不是按顺序的,所以可以先排序,然后用dp[i][j]表示前i个数分成j个集合所得到的最小代价,和邮局那题有点相似,要用四边形优化,不然会超时,看别人的写法发现斜率优化更快,学完后再来写吧。
    #include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string.h>
    #include<math.h>
    #include<vector>
    #include<map>
    #include<set>
    #include<queue>
    #include<stack>
    #include<string>
    #include<algorithm>
    using namespace std;
    #define ll long long
    #define inf 999999999
    int a[10060],dp[10060][5060],s[10060][5060];
    int main()
    {
        int n,m,i,j,T,len,k,num1=0;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d%d",&n,&m);
            for(i=1;i<=n;i++){
                scanf("%d",&a[i]);
            }
            sort(a+1,a+1+n);
            for(i=1;i<=n;i++){
                dp[i][1]=(a[i]-a[1])*(a[i]-a[1]);
                s[i][1]=1;
            }
            for(j=2;j<=m;j++){
                dp[j][j]=0;
                s[n+1][j]=n;
                for(i=n;i>j;i--){
                    dp[i][j]=inf;
                    for(k=s[i][j-1];k<=s[i+1][j];k++){
                        if(dp[i][j]>dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1])){
                            dp[i][j]=dp[k][j-1]+(a[i]-a[k+1])*(a[i]-a[k+1]);
                            s[i][j]=k;
                        }
                    }
                }
            }
            num1++;
            printf("Case %d: %d
    ",num1,dp[n][m]);
        }
        return 0;
    }
    


  • 相关阅读:
    javascript 事件冒泡的补充
    不存在的数组元素
    Android应用程序线程消息循环模型分析
    Android系统匿名共享内存(Anonymous Shared Memory)C++调用接口分析
    Linux下的压缩解压缩命令详解
    Android应用程序组件Content Provider简要介绍和学习计划
    Android应用程序组件Content Provider应用实例
    三层架构之初识庐山真面目
    Android系统的智能指针(轻量级指针、强指针和弱指针)的实现原理分析
    Android应用程序消息处理机制(Looper、Handler)分析
  • 原文地址:https://www.cnblogs.com/herumw/p/9464671.html
Copyright © 2011-2022 走看看