zoukankan      html  css  js  c++  java
  • LeetCode-310 Minimum Height Trees

    题目描述

    For an undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

    Format
    The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

    You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

    题目大意

    给出一组点之间的关系,要求从所给的点中找出一个点作为根节点,使得形成的树的高度最低。

    示例

    E1

    Input: n = 4, edges = [[1, 0], [1, 2], [1, 3]]
    
            0
            |
            1
           / 
          2   3 
    
    Output: [1]

    E2

    Input: n = 6, [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
    
         0  1  2
           | /
            3
            |
            4
            |
            5 
    
    Output: [3, 4]

    解题思路

    保存所有结点的度,每次找到叶节点并将其删除,此时会有新的叶节点出现,再进行遍历删除叶节点。。。最后剩下的一个或两个结点就是可能的根节点。

    复杂度分析

    时间复杂度:O(V + E)

    空间复杂度:O(V + E)

    代码

    class Solution {
    public:
        vector<int> findMinHeightTrees(int n, vector<vector<int>>& edges) {
            vector<unordered_set<int> > node(n);
            // 保存各节点的邻结点
            for(int i = 0; i < edges.size(); ++i) {
                node[edges[i][0]].insert(edges[i][1]);
                node[edges[i][1]].insert(edges[i][0]);
            }
            // 保存各结点的度
            vector<int> degree(n, 0);
            for(int i = 0; i < n; ++i)
                degree[i] = node[i].size();
            // 遍历各个结点
            for(int i = 0, remain = n; i < n && remain > 2; ++i) {
                vector<int> del;
                // 查找叶节点
                for(int j = 0; j < n; ++j) {
                    if(degree[j] == 1) {
                        --remain;
                        del.push_back(j);
                        degree[j] = -1;
                    }
                }
                // 删除叶节点
                for(auto k : del) {
                    for(auto neigh : node[k])
                        degree[neigh]--;
                }
            }
            // 剩余的结点为可能的根节点
            vector<int> res;
            for(int i = 0; i < n; ++i) {
                if(degree[i] >= 0)
                    res.push_back(i);
            }
            return res;
        }
    };
  • 相关阅读:
    PHP笔记
    HTML5储存
    KeyDown,KeyPress和KeyUp详解(转)
    Vue.js和angular.js区别
    java 解析json的问题
    在Eclipse中使用JUnit4进行单元测试
    Ibatis代码自动生成工具——Abator安装与应用实例(图解)
    IT人员----怎么把电脑窗口设置成淡绿色
    Java面试题之数据库三范式是什么
    Java面试题之jsp相关
  • 原文地址:https://www.cnblogs.com/heyn1/p/11169964.html
Copyright © 2011-2022 走看看