zoukankan      html  css  js  c++  java
  • 使用keras的LSTM进行预测----实战练习

    代码

    import numpy as np
    from keras.models import Sequential
    from keras.layers import Dense
    from keras.layers import LSTM
    
    import marksix_1
    import talib as ta
    
    
    lt = marksix_1.Marksix()
    lt.load_data(period=500)
    
    # 指标序列
    m = 2
    series = lt.adapter(loc='0000001', zb_name='mod', args=(m, lt.get_mod_list(m)), tf_n=0)
    
    # 实时线
    close = np.cumsum(series).astype(float)
    
    # 布林线
    timeperiod = 5
    upper, middle, lower = ta.BBANDS(close, timeperiod=timeperiod, nbdevup=2, nbdevdn=2, matype=0)
    
    # 趋势
    qushi1 = np.where(close-middle < 0, 0, 1)# 实时线在均线上、下方
    qushi2 = np.where(middle[1:] - middle[:-1] < 0, 0, 1) # 均线上、下行(长度少了1)
    
    # 标签转化为0,1
    y = np.where(series==-1, 0, 1)
    
    # 构造特征(注意,已经归一化,全部为非负数)
    f = upper-lower
    f = f[timeperiod:] # 去掉了前面timeperiod个nan数据!!!
    f = (f - f.min()) / (f.max() - f.min()) # 归一化
    y = y[timeperiod:]
    qushi1 = qushi1[timeperiod:]
    qushi2 = qushi2[timeperiod-1:]
    features = np.column_stack([y, qushi1, qushi2, f]) # 特征:[标签、趋势1、趋势2、布林宽度]
    
    # 
    data_len = len(series)
    time_steps = 3
    
    # 将数据转化为[样本数, 时间步数, 特征数]的形式
    X = [features[i:i+time_steps] for i in range(data_len-time_steps-timeperiod)] # [samples, time steps * features]
    X = np.reshape(X, (data_len - time_steps-timeperiod, time_steps, -1)) # [samples, time steps, features]
    
    # 标签长度一致
    y = y[time_steps:]
    
    # one-hot编码
    y = np.eye(2)[y]
    
    # 划分训练数据、测试数据
    train_X, test_X = X[:-20], X[-20:]
    train_y, test_y = y[:-20], y[-20:]
    
    # =================================
    model = Sequential()
    model.add(LSTM(64, input_shape=(X.shape[1], X.shape[2])))
    model.add(Dense(y.shape[1], activation='softmax')) # 输出各类的概率(softmax)
    model.compile(loss='categorical_crossentropy',     # 单标签,多分类(categorical_crossentropy)
                  optimizer='adam', 
                  metrics=['accuracy'])
    
    model.fit(train_X, train_y, epochs=500, batch_size=1, verbose=2)
    
    #检查模型在测试集上的表现是否良好
    test_loss, test_acc = model.evaluate(test_X, test_y)
    print('test_acc:', test_acc)

    效果图

    结论

    只测试了mod 2的情况,效果不好.

    训练数据精度可以达到三分之二左右,测试数据的精度只有四分之一。头脑风暴,几乎可以反其道而行之!可能不失为可行之策。

    下一步:

    1.画出后20个数据k线图,看是否是震荡区间,亦或是趋势区间

    2.换别的指标看看

  • 相关阅读:
    范仁义css3课程---5、css的继承、层叠和特殊性
    范仁义css3课程---4、css常用选择器
    心得体悟帖---200103(路是我自己选的)
    心得体悟帖---200103(变化的观点)(我是对的)
    心得体悟帖---200103(开心与否更看内心)(不要丢失希望)
    心得体悟帖---200103(看似感伤)(不计较)
    windows的80端口被system进程占用的一个可能原因
    windows如何关闭mysql服务
    范仁义css3课程---3、css最常用选择器
    ImageView类简介
  • 原文地址:https://www.cnblogs.com/hhh5460/p/10217000.html
Copyright © 2011-2022 走看看