zoukankan      html  css  js  c++  java
  • pandas groupby

    pandas.DataFrame.groupby

    DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)

    Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.
        Parameters:    

        by : mapping function / list of functions, dict, Series, or tuple /

            list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups

        axis : int, default 0

        level : int, level name, or sequence of such, default None

            If the axis is a MultiIndex (hierarchical), group by a particular level or levels

        as_index : boolean, default True

            For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output

        sort : boolean, default True

            Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.

        group_keys : boolean, default True

            When calling apply, add group keys to index to identify pieces

        squeeze : boolean, default False

            reduce the dimensionality of the return type if possible, otherwise return a consistent type

        Returns:    

            GroupBy object


    Examples


    DataFrame results

    >>> data.groupby(func, axis=0).mean()
    >>> data.groupby(['col1', 'col2'])['col3'].mean()



    DataFrame with hierarchical index

    >>> data.groupby(['col1', 'col2']).mean()



  • 相关阅读:
    Men and women can't be 'just friends
    thin-provisioning-tools
    自签名证书
    sqlite manager
    python -m SimpleHTTPServer 80801
    rsa or dsa?
    sl4a
    mtp
    sl4a
    基站记录仪是个啥?
  • 原文地址:https://www.cnblogs.com/hhh5460/p/5596374.html
Copyright © 2011-2022 走看看