zoukankan      html  css  js  c++  java
  • pandas groupby

    pandas.DataFrame.groupby

    DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)

    Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.
        Parameters:    

        by : mapping function / list of functions, dict, Series, or tuple /

            list of column names. Called on each element of the object index to determine the groups. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups

        axis : int, default 0

        level : int, level name, or sequence of such, default None

            If the axis is a MultiIndex (hierarchical), group by a particular level or levels

        as_index : boolean, default True

            For aggregated output, return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively “SQL-style” grouped output

        sort : boolean, default True

            Sort group keys. Get better performance by turning this off. Note this does not influence the order of observations within each group. groupby preserves the order of rows within each group.

        group_keys : boolean, default True

            When calling apply, add group keys to index to identify pieces

        squeeze : boolean, default False

            reduce the dimensionality of the return type if possible, otherwise return a consistent type

        Returns:    

            GroupBy object


    Examples


    DataFrame results

    >>> data.groupby(func, axis=0).mean()
    >>> data.groupby(['col1', 'col2'])['col3'].mean()



    DataFrame with hierarchical index

    >>> data.groupby(['col1', 'col2']).mean()



  • 相关阅读:
    VMI
    jsp环境搭建(Windows)
    128M小内存VPS优化与typecho环境搭建
    Shell字符串
    bash和sh区别
    PHPDocument 代码注释规范总结
    PHP 程序员的技术成长规划
    JavaScript:JSON
    mongoDB 使用手册
    PHP面向对象的标准
  • 原文地址:https://www.cnblogs.com/hhh5460/p/5596374.html
Copyright © 2011-2022 走看看