^f(x)=e^2113(x^2),
则f[g(x)]=e^[g²(x)]=1-x
两边取以e为底的对数得5261:
g²(x)=ln(1-x)
因为g(x)≧41020
所以:g(x)=√ln(1-x),
则ln(1-x)≧0
ln(1-x)≧ln1
1-x≧1
x≦0
所以,定义域为(-∞,0]
则f[g(x)]=e^[g²(x)]=1-x
两边取以e为底的对数得5261:
g²(x)=ln(1-x)
因为g(x)≧41020
所以:g(x)=√ln(1-x),
则ln(1-x)≧0
ln(1-x)≧ln1
1-x≧1
x≦0
所以,定义域为(-∞,0]