zoukankan      html  css  js  c++  java
  • 负载平衡Load Balancing_Silver

    题目描述

    Farmer John's NN cows are each standing at distinct locations (x_1, y_1) ldots (x_n, y_n)(x1,y1)(xn,yn) on his two-dimensional farm (1 leq N leq 10001N1000, and the x_ixi's and y_iyi's are positive odd integers of size at most 1,000,0001,000,000). FJ wants to partition his field by building a long (effectively infinite-length) north-south fence with equation x=ax=a (aa will be an even integer, thus ensuring that he does not build the fence through the position of any cow). He also wants to build a long (effectively infinite-length) east-west fence with equation y=by=b, where bb is an even integer. These two fences cross at the point (a,b)(a,b), and together they partition his field into four regions.

    FJ wants to choose aa and bb so that the cows appearing in the four resulting regions are reasonably "balanced", with no region containing too many cows. Letting MM be the maximum number of cows appearing in one of the four regions, FJ wants to make MM as small as possible. Please help him determine this

    smallest possible value for MM.

    给你一个矩阵,里面有些点,让你横向切一刀,纵向切一刀,使得得到的四个区域内的最大的点数最少。

    输入格式

    The first line of the input contains a single integer, NN. The next NN lines

    each contain the location of a single cow, specifying its xx and yy

    coordinates.

    输出格式

    You should output the smallest possible value of MM that FJ can achieve by

    positioning his fences optimally.

    输入输出样例

    输入 #1
    7
    7 3
    5 5
    7 13
    3 1
    11 7
    5 3
    9 1
    输出 #1
    2

    #include<cstdio>
    #include<algorithm>
    #include<cmath>
    using namespace std;
    
    void chmin(int &x,int y){
        if(x>y)x=y;
    }
    
    const int N=40000005;
    int n,i,u;
    int px[N],py[N];
    int id[N];
    
    bool hhh(int x,int y){
       return py[x]<py[y];
    }
    
    bool kkk(int x,int y){
       return px[x]<px[y];
    }
    
    int lisan_py(){
        for(i=1;i<=n;++i){
            id[i]=i;
        }
        sort(id+1,id+n+1,hhh);
        int now=0,top=0;
        for(i=1;i<=n;++i){
            int x=id[i];
            if(py[x]!=now){
                now=py[x];
                ++top;
            }
            py[x]=top;
        }
        return top;
    }
    
    #define cl (i<<1)
    #define cr (cl+1)
    
    int al[N*4],ar[N*4],d;
    
    void init(int *a){
        for(i=1;i<=n;++i){
            ++a[d+py[i]];
        }
        for(i=u+d>>1;i;--i){
            a[i]=a[cl]+a[cr];
        }
    }
    
    void add(int *a,int i,int w){
        for(i+=d;i;i>>=1){
            a[i]+=w;
        }
    }
    
    int erfen(){
        i=1;
        int all=0,alr=0,arl=0,arr=0;
        while(i<=d){
            int mxl=max(all+al[cl],arl+ar[cl]),mxr=max(alr+al[cr],arr+ar[cr]);
            if(mxl<=mxr){
                all+=al[cl];
                arl+=ar[cl];
                i=cr;
            }
            else{
                alr+=al[cr];
                arr+=ar[cr];
                i=cl;
            }
        }
        int mxl=max(max(all+al[i],arl+ar[i]),max(all,arr)),
        mxr=max(max(alr+al[i],arr+al[i]),max(all,arl));
        return min(mxl,mxr); 
    }
    
    
    int main(){
        int i;
        scanf("%d",&n);
        for(i=1;i<=n;++i){
            scanf("%d%d",px+i,py+i);
        }
        u=lisan_py();
        for(d=1;d<u;d<<=1);d-=1;
        init(ar);
        sort(id+1,id+n+1,kkk);
        int ans=n;
        for(i=1;i<=n;++i){
            int x=id[i];
            add(ar,py[x],-1);
            add(al,py[x],1);
            chmin(ans,erfen());
        }
        printf("%d
    ",ans);
    }
  • 相关阅读:
    洛谷1012 拼数
    洛谷1012 拼数
    洛谷 1155 (NOIp2008)双栈排序——仔细分析不合法的条件
    bzoj 3566 [SHOI2014]概率充电器——树型
    bzoj 1415 [Noi2005]聪聪和可可——其实无环的图上概率
    洛谷 1291 [SHOI2002]百事世界杯之旅
    洛谷 1365 WJMZBMR打osu! / Easy
    洛谷 1297 [国家集训队]单选错位——期望
    洛谷 1099 ( bzoj 1999 ) [Noip2007]Core树网的核
    洛谷 2827 蚯蚓——相邻两个比较的分析
  • 原文地址:https://www.cnblogs.com/hrj1/p/11211712.html
Copyright © 2011-2022 走看看