在机器学习中,我们常常需要把训练好的模型存储起来,这样在进行决策时直接将模型读出,而不需要重新训练模型,这样就大大节约了时间。Python提供的pickle模块就很好地解决了这个问题,它可以序列化对象并保存到磁盘中,并在需要的时候读取出来,任何对象都可以执行序列化操作。
Pickle模块中最常用的函数为:
(1)pickle.dump(obj, file, [,protocol])
函数的功能:将obj对象序列化存入已经打开的file中。
参数讲解:
- obj:想要序列化的obj对象。
- file:文件名称。
- protocol:序列化使用的协议。如果该项省略,则默认为0。如果为负值或HIGHEST_PROTOCOL,则使用最高的协议版本。
(2)pickle.load(file)
函数的功能:将file中的对象序列化读出。
参数讲解:
- file:文件名称。
(3)pickle.dumps(obj[, protocol])
函数的功能:将obj对象序列化为string形式,而不是存入文件中。
参数讲解:
- obj:想要序列化的obj对象。
- protocal:如果该项省略,则默认为0。如果为负值或HIGHEST_PROTOCOL,则使用最高的协议版本。
(4)pickle.loads(string)
函数的功能:从string中读出序列化前的obj对象。
参数讲解:
- string:文件名称。
【注】 dump() 与 load() 相比 dumps() 和 loads() 还有另一种能力:dump()函数能一个接着一个地将几个对象序列化存储到同一个文件中,随后调用load()来以同样的顺序反序列化读出这些对象。
【代码示例】
pickleExample.py
#!/usr/bin/env python # -*- coding:utf-8 -*- # Author:Huanglinsheng import pickle dataList = [ [1, 1, 'yes'], [1, 1, 'yes'], [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no'] ] dataDic = { 0: [1, 2, 3, 4], 1: ('a', 'b'), 2: {'c':'yes','d':'no'} } #使用dump()将数据序列化到文件中 fw = open('dataFile.txt','wb') pickle.dump(dataList,fw,-1) pickle.dump(dataDic,fw) fw.close() #使用load()将数据从文件中序列化读出 fr = open('dataFlie.txt','rb') data1 = pickle.load(fr) print(data1) data2 = pickle.load(fr) print(data2) fr.close() #使用dumps() 和loads()举例 p = pickle.dumps(dataList) print(pickle.loads(p)) p = pickle.dumps(dataDic) print(pickle.loads(p))