zoukankan      html  css  js  c++  java
  • 第三次实验

    一、相关信息

    实验班级 机器学习
    实验名称 朴素贝叶斯算法及应用
    学号 3180701333
    二、实验信息
    【实验目的】
    1.理解决策树算法原理,掌握决策树算法框架;
    2.理解决策树学习算法的特征选择、树的生成和树的剪枝;
    3.能根据不同的数据类型,选择不同的决策树算法;
    4.针对特定应用场景及数据,能应用决策树算法解决实际问题。

    【实验内容】
    1.设计算法实现熵、经验条件熵、信息增益等方法。
    2.实现ID3算法。
    3.熟悉sklearn库中的决策树算法;
    4.针对iris数据集,应用sklearn的决策树算法进行类别预测。
    5.针对iris数据集,利用自编决策树算法进行类别预测。

    【实验报告要求】
    1.对照实验内容,撰写实验过程、算法及测试结果;
    2.代码规范化:命名规则、注释;
    3.分析核心算法的复杂度;
    4.查阅文献,讨论ID3、5算法的应用场景;
    5.查询文献,分析决策树剪枝策略。

    三、实验具体完成情况
    (1)实验主要代码及部分注释:

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    %matplotlib inline
    from sklearn.datasets import load_iris
    from sklearn.model_selection import train_test_split
    from collections import Counter
    import math
    from math import log
    import pprint
    
    # 书上题目5.1
    def create_data():
        datasets = [['青年', '否', '否', '一般', '否'],
                    ['青年', '否', '否', '好', '否'],
                    ['青年', '是', '否', '好', '是'],
                    ['青年', '是', '是', '一般', '是'],
                    ['青年', '否', '否', '一般', '否'],
                    ['中年', '否', '否', '一般', '否'],
                    ['中年', '否', '否', '好', '否'],
                    ['中年', '是', '是', '好', '是'],
                    ['中年', '否', '是', '非常好', '是'],
                    ['中年', '否', '是', '非常好', '是'],
                    ['老年', '否', '是', '非常好', '是'],
                    ['老年', '否', '是', '好', '是'],
                    ['老年', '是', '否', '好', '是'],
                    ['老年', '是', '否', '非常好', '是'],
                    ['老年', '否', '否', '一般', '否'],]
        labels = [u'年龄', u'有工作', u'有自己的房子', u'信贷情况', u'类别']
        # 返回数据集和每个维度的名称
        return datasets, labels
    datasets, labels = create_data()
    train_data = pd.DataFrame(datasets, columns=labels)
    train_data
    
    # 熵
    def calc_ent(datasets):
        data_length = len(datasets)
        label_count = {}
        for i in range(data_length):
            label = datasets[i][-1]
            if label not in label_count:
                label_count[label] = 0
            label_count[label] += 1
        ent = -sum([(p / data_length) * log(p / data_length, 2)
                    for p in label_count.values()])
        return ent
    # def entropy(y):
    # """
    # Entropy of a label sequence
    # """
    # hist = np.bincount(y)
    # ps = hist / np.sum(hist)
    # return -np.sum([p * np.log2(p) for p in ps if p > 0])
    # 经验条件熵 
    def cond_ent(datasets, axis=0):
        data_length = len(datasets)
        feature_sets = {}
        for i in range(data_length):
            feature = datasets[i][axis]
            if feature not in feature_sets:
                feature_sets[feature] = []
            feature_sets[feature].append(datasets[i])
        cond_ent = sum([(len(p) / data_length) * calc_ent(p) for p in feature_sets.values()])
        return cond_ent
    # 信息增益 
    def info_gain(ent, cond_ent):
        return ent - cond_ent
    def info_gain_train(datasets):
        count = len(datasets[0]) - 1
        ent = calc_ent(datasets)
    # ent = entropy(datasets)
     
        best_feature = []
        for c in range(count):
            c_info_gain = info_gain(ent, cond_ent(datasets, axis=c))
            best_feature.append((c, c_info_gain))
            print('特征({}) - info_gain - {:.3f}'.format(labels[c], c_info_gain))
        # 比较大小
        best_ = max(best_feature, key=lambda x: x[-1])
        return '特征({})的信息增益最大,选择为根节点特征'.format(labels[best_[0]])
    info_gain_train(np.array(datasets))
    
    # 定义节点类 二叉树 
    class Node:
        def __init__(self, root=True, label=None, feature_name=None, feature=None):
            self.root = root
            self.label = label
            self.feature_name = feature_name
            self.feature = feature
            self.tree = {}
            self.result = {
                'label:': self.label,
                'feature': self.feature,
                'tree': self.tree}
        def __repr__(self):
            return '{}'.format(self.result)
        def add_node(self, val, node):
            self.tree[val] = node
        def predict(self, features):
            if self.root is True:
                return self.label
            return self.tree[features[self.feature]].predict(features) 
    
    class DTree:
        def __init__(self, epsilon=0.1):
            self.epsilon = epsilon
            self._tree = {}
        # 熵
        @staticmethod
        def calc_ent(datasets):
            data_length = len(datasets)
            label_count = {}
            for i in range(data_length):   
                label = datasets[i][-1]
                if label not in label_count:
                    label_count[label] = 0
                label_count[label] += 1
            ent = -sum([(p / data_length) * log(p / data_length, 2)
                        for p in label_count.values()])
            return ent
        # 经验条件熵
        def cond_ent(self, datasets, axis=0):
            data_length = len(datasets)
            feature_sets = {}
            for i in range(data_length):
                feature = datasets[i][axis]
                if feature not in feature_sets:
                    feature_sets[feature] = []
                feature_sets[feature].append(datasets[i])
            cond_ent = sum([(len(p) / data_length) * self.calc_ent(p)
                            for p in feature_sets.values()])
            return cond_ent
        # 信息增益
        @staticmethod
        def info_gain(ent, cond_ent):
            return ent - cond_ent
        def info_gain_train(self, datasets):
            count = len(datasets[0]) - 1
            ent = self.calc_ent(datasets)
            best_feature = []
            for c in range(count):
                c_info_gain = self.info_gain(ent, self.cond_ent(datasets, axis=c))
                best_feature.append((c, c_info_gain))
                # 比较大小
                best_ = max(best_feature, key=lambda x: x[-1])
                return best_
        def train(self, train_data):
            """
            input:数据集D(DataFrame格式),特征集A,阈值eta
            output:决策树T
            """
            _, y_train, features = train_data.iloc[:, :
                                                   -1], train_data.iloc[:,-1], train_data.columns[:-1]
            # 1,若D中实例属于同一类Ck,则T为单节点树,并将类Ck作为结点的类标记,返回T
            if len(y_train.value_counts()) == 1:
                return Node(root=True, label=y_train.iloc[0])
            # 2, 若A为空,则T为单节点树,将D中实例树最大的类Ck作为该节点的类标记,返回T
            if len(features) == 0:
                return Node(
                    root=True,
                    label=y_train.value_counts().sort_values(
                        ascending=False).index[0])
            # 3,计算最大信息增益 同5.1,Ag为信息增益最大的特征
            max_feature, max_info_gain = self.info_gain_train(np.array(train_data))
            max_feature_name = features[max_feature]
            # 4,Ag的信息增益小于阈值eta,则置T为单节点树,并将D中是实例数最大的类Ck作为该节点的类标记,返
            if max_info_gain < self.epsilon:
                return Node(
                    root=True,
                    label=y_train.value_counts().sort_values(ascending=False).index[0])
            # 5,构建Ag子集
            node_tree = Node(
                root=False, feature_name=max_feature_name, feature=max_feature)
            feature_list = train_data[max_feature_name].value_counts().index
            for f in feature_list:
                sub_train_df = train_data.loc[train_data[max_feature_name] ==f].drop([max_feature_name], axis=1)
                # 6, 递归生成树
                sub_tree = self.train(sub_train_df)
                node_tree.add_node(f, sub_tree)
            # pprint.pprint(node_tree.tree)
            return node_tree
        def fit(self, train_data):
            self._tree = self.train(train_data)
            return self._tree
        def predict(self, X_test):
            return self._tree.predict(X_test)
    
    datasets, labels = create_data()
    data_df = pd.DataFrame(datasets, columns=labels)
    dt = DTree()
    tree = dt.fit(data_df)
    tree
    dt.predict(['老年', '否', '否', '一般'])
    
    # data
    def create_data():
        iris = load_iris()
        df = pd.DataFrame(iris.data, columns=iris.feature_names)
        df['label'] = iris.target
        df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
        data = np.array(df.iloc[:100, [0, 1, -1]])
        # print(data)
        return data[:, :2], data[:, -1] 
    X, y = create_data()
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
    
    from sklearn.tree import DecisionTreeClassifier
    from sklearn.tree import export_graphviz
    import graphviz
    clf = DecisionTreeClassifier()
    clf.fit(X_train, y_train,)
    clf.score(X_test, y_test)
    tree_pic = export_graphviz(clf, out_file="mytree.pdf") 
    with open('mytree.pdf') as f:
        dot_graph = f.read()
    graphviz.Source(dot_graph)
    

    (2)实验运行结果截图:





    三.实验小结
    通过本次实验,我对课本有关朴素贝叶斯算法的原理有了更近一步的掌握,对于朴素贝叶斯来说,它具有一个较强的假设即特征条件独立,这使得它条件概率的计算量大大减少。同时,我也学会了使用常见的高斯模型,多项式模型和伯努利模型去实现朴素贝叶斯算法。虽然朴素贝叶斯使用了过于简化的假设,这个分类器在许多实际情况中都运行良好,著名的是文档分类和垃圾邮件过滤。而且由于贝叶斯是从概率角度进行估计的,它所需要的样本量比较少,极端情况下甚至我们可以使用较少的数据作为训练集,依然可以得到很好的拟合效果。

    朴素贝叶斯的主要优点在于:
    1)朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率。
    2)对小规模的数据表现很好,能个处理多分类任务,适合增量式训练,尤其是数据量超出内存时,我们可以一批批的去增量训练。
    3)对缺失数据不太敏感,算法也比较简单,常用于文本分类。

    朴素贝叶斯的主要缺点在于:
    1)理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。
    2)需要知道先验概率,且先验概率很多时候取决于假设,假设的模型可以有很多种,因此在某些时候会由于假设的先验模型的原因导致预测效果不佳。
    3)由于我们是通过先验和数据来决定后验的概率从而决定分类,所以分类决策存在一定的错误率。
    4)对输入数据的表达形式很敏感。

  • 相关阅读:
    word2vec
    视频推荐系统
    python基础
    go-elasticsearch
    Docker 部署 go项目
    gohbase
    禅道部署linux
    jmeter 报错 Error occurred during initialization of VM Could not reserve enough space for object heap
    jarvis OJ-DSA
    算法-我的第一本算法书(一)
  • 原文地址:https://www.cnblogs.com/hukoutian123/p/14945084.html
Copyright © 2011-2022 走看看