zoukankan      html  css  js  c++  java
  • MapReduce实现WordCount

    package algorithm;
    
    import java.io.IOException;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    //前两个参数是固定的后两个根据需要修改  第四个参数我改成了IntWritable  比int写的快
    public class TestMapper1 extends Mapper<LongWritable, Text, Text, IntWritable> {
    
    	//key是行好  value是哪一行内容
    	//文件多少行 map调用多少次
    	public void map(LongWritable key, Text value, Context context)
    			throws IOException, InterruptedException {
    		String line = value.toString();
    		StringTokenizer st = new StringTokenizer(line);
    		while(st.hasMoreElements()) {
    			String word = st.nextToken();
    			context.write(new Text(word), new IntWritable(1));//map的输出
    		}
    	}
    
    }
    

      

    package algorithm;
    
    import java.io.IOException;
    
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    public class TestReduce1 extends Reducer<Text, IntWritable, Text, IntWritable> {
    
    	public void reduce(Text key, Iterable<IntWritable> iterable, Context context)
    			throws IOException, InterruptedException {
    		// process values
    		int sum = 0;
    		for (IntWritable val : iterable) {
    			sum += val.get();//get转为整数
    		}
    		context.write(key, new IntWritable(sum));
    	}
    
    }
    

      

    package algorithm;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    
    public class Mapreduce1 {
    	public static void main(String[] args) throws Exception {
    		Configuration conf = new Configuration(); //对应于mapred-site.xml
    		Job job = new Job(conf,"WordCount");
    		job.setJarByClass(Mapreduce1.class);
    		job.setMapperClass(TestMapper1.class);
    		job.setReducerClass(TestReduce1.class);
    		job.setOutputKeyClass(Text.class);
    		job.setOutputValueClass(IntWritable.class);
    		
    		job.setNumReduceTasks(1);
    		//"/in"解析不了  提示文件不存在 因为把他们认为是本地文件了 因为有个 file:/
    		FileInputFormat.addInputPath(job, new Path("hdfs://192.168.58.180:8020/in"));
    		//输出文件不能存在   
    		FileOutputFormat.setOutputPath(job, new Path("hdfs://192.168.58.180:8020/wordcount"));
    		System.exit(job.waitForCompletion(true) ? 0 : 1);
    	}
    }
    

      

  • 相关阅读:
    将帅问题
    堆栈(链栈)
    堆栈(基础实现原理 顺序栈)
    双向链表
    冒泡排序 (泛型版)
    maven
    jboss数据源配置
    仓库介绍,nexus的安装
    mave聚合继承
    mac mysql 安装
  • 原文地址:https://www.cnblogs.com/hxsyl/p/6087088.html
Copyright © 2011-2022 走看看