zoukankan      html  css  js  c++  java
  • POJ

    Description

    Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall. 
    Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible. 

    Input

    The input includes several cases. For each case, the first line contains two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn. Each of the following N lines corresponds to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.

    Output

    For each case, output a single line with a single integer, the maximum number of milk-producing stall assignments that can be made.

    Sample Input

    5 5
    2 2 5
    3 2 3 4
    2 1 5
    3 1 2 5
    1 2 
    

    Sample Output

    4

    //KM模板
    #include<iostream>
    #include<cstdio>
    #include<string>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    #include<stack>
    #define ll long long
    using namespace std;
    const int MAXN = 510;
    ll read() {
        ll x=0,f=1;
        char ch=getchar();
        while(!(ch>='0'&&ch<='9')) {
            if(ch=='-')f=-1;
            ch=getchar();
        };
        while(ch>='0'&&ch<='9') {
            x=x*10+(ch-'0');
            ch=getchar();
        };
        return x*f;
    }
    int uN,vN;//u,v ???,????????
    int g[MAXN][MAXN];//????
    int linker[MAXN];
    bool used[MAXN];
    bool dfs(int u) {
        for(int v = 1; v <= vN; v++)
            if(g[u][v] && !used[v]) {
                used[v] = true;
                if(linker[v] == -1 || dfs(linker[v])) {
                    linker[v] = u;
                    return true;
                }
            }
        return false;
    }
    int hungary() {
        int res = 0;
        memset(linker,-1,sizeof(linker));
        for(int u = 1; u <= uN; u++) {
            memset(used,false,sizeof(used));
            if(dfs(u))res++;
        }
        return res;
    }
    int main() {
        while(scanf("%d%d",&uN,&vN) == 2) {
            int tt,vv,ans;
            memset(g,0,sizeof(g));
            for(int i = 1; i <= uN; i++) {
                tt = read();
                for(int j = 1; j <= tt; j++) {
                    vv = read();
                    g[i][vv] = 1;
                }
    
            }
            ans = hungary();
            /*for(int i = 1;i <= 5;i++) cout<<linker[i]<<" ";
            cout<<endl;*/
            cout<<ans<<endl;
        }
        return 0;
    }
  • 相关阅读:
    如何使用第三方webservice
    SQL零星技术点:SQL中转换money类型数值转换为字符串问题
    P2664 树上颜色统计 点分治 虚树 树上差分 树上莫队
    SPOJ 1825 经过不超过K个黑点的树上最长路径 点分治
    P4149 距离为K的点对(最少边数) n=200000 点分治
    P2634 树上路径长度为3的倍数的点对数 点分治
    P3806 离线多次询问 树上距离为K的点对是否存在 点分治
    POJ 1741 单次询问树上距离<=K的点对数 点分治
    BZOJ 1016 生成树计数
    BZOJ 1015 并查集&连通块
  • 原文地址:https://www.cnblogs.com/hyfer/p/9476685.html
Copyright © 2011-2022 走看看