zoukankan      html  css  js  c++  java
  • uva 10817

    Problem D: Headmaster's Headache

    Time limit: 2 seconds

    The headmaster of Spring Field School is considering employing some new teachers for certain subjects. There are a number of teachers applying for the posts. Each teacher is able to teach one or more subjects. The headmaster wants to select applicants so that each subject is taught by at least two teachers, and the overall cost is minimized.

    Input

    The input consists of several test cases. The format of each of them is explained below:

    The first line contains three positive integers SM andNS (≤ 8) is the number of subjects, M (≤ 20) is the number of serving teachers, and N (≤ 100) is the number of applicants.

    Each of the following M lines describes a serving teacher. It first gives the cost of employing him/her (10000 ≤ C ≤ 50000), followed by a list of subjects that he/she can teach. The subjects are numbered from 1 to SYou must keep on employing all of them.After that there are N lines, giving the details of the applicants in the same format.

    Input is terminated by a null case where S = 0. This case should not be processed.

    Output

    For each test case, give the minimum cost to employ the teachers under the constraints.

    Sample Input

    2 2 2
    10000 1
    20000 2
    30000 1 2
    40000 1 2
    0 0 0
    

    Sample Output

    60000
    

     状态dp

     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 #include <algorithm>
     5 
     6 using namespace std;
     7 
     8 const int MAX_N = 105;
     9 const int INF = 7000000;
    10 int S, M, N;
    11 int ns1 = 0 , ns2 = 0;
    12 int s[MAX_N], prize[MAX_N];
    13 int dp[1 << 9][1 << 9];
    14 
    15 void solve() {
    16         dp[ns1][ns2] = prize[0];
    17         dp[ns2][ns1] = prize[0];
    18         for(int i = 1; i <= N; ++i) {
    19                 for(int s1 = (1 << S) - 1; s1 >= 0; --s1) {
    20                         for(int s2 = (1 << S) - 1; s2 >= 0; --s2) {
    21                                 if(dp[s1][s2] != INF) {
    22                                         dp[s1 | s[i]][s1 & s[i] | s2] =
    23                                         min(dp[s1 | s[i]][s1 & s[i] | s2]
    24                                         , dp[s1][s2] + prize[i]);
    25 
    26                                         dp[s2 & s[i] | s1][s2 | s[i]] =
    27                                         min(dp[s2 & s[i] | s1][s2 | s[i]]
    28                                         , dp[s1][s2] + prize[i]);
    29                                 }
    30                         }
    31                 }
    32         }
    33 }
    34 
    35 int main()
    36 {
    37     //freopen("sw.in","r",stdin);
    38     while(~scanf("%d%d%d", &S, &M, &N) && (S + M + N)) {
    39             ns1 = 0; ns2 = 0;
    40             for(int i = 0; i < (1 << S); ++i)
    41                     for(int j = 0; j < (1 << S); ++j) dp[i][j] = INF;
    42             memset(prize, 0, sizeof(prize));
    43             memset(s, 0, sizeof(s));
    44 
    45             for(int i = 1; i <= M; ++i) {
    46                     int ch, v;
    47                     char c;
    48                     scanf("%d%d%c",&v, &ch, &c);
    49                     prize[0] += v;
    50                     ns2 |=  ns1 & (1 << (ch - 1));
    51                     ns1 |= 1 << (ch - 1);
    52 
    53                     while(c != '
    ') {
    54                             scanf("%d%c", &ch, &c);
    55                             ns2 |=  ns1 & (1 << (ch - 1));
    56                             ns1 |= 1 << (ch - 1);
    57                     }
    58 
    59             }
    60 
    61             for(int i = 1; i <= N; ++i) {
    62                     int ch;
    63                     char c;
    64                     scanf("%d%d%c", &prize[i], &ch, &c);
    65                     s[i] |=  1 << (ch - 1);
    66                     while(c != '
    ') {
    67                             scanf("%d%c", &ch, &c);
    68                             s[i] |= 1 << (ch - 1);
    69                     }
    70             }
    71 
    72             solve();
    73             printf("%d
    ", dp[(1 << S) - 1][(1 << S) - 1]);
    74     }
    75     return 0;
    76 }
    View Code
  • 相关阅读:
    uva 1416 (SPFA) **月赛第E题的原题**
    uva 10917 (Dijsktra+记忆化搜索) **月赛第D题的原题**
    uva 11478(二分+差分约束系统)
    uva 11374(Dijkstra) HappyNewYear!!!
    Codeforces GoodBye2013 解题报告
    Codeforces Round #222 (Div. 2) 解题报告
    uva 515(差分约束)
    uva 10273(模拟)
    uva 10985(floyd+dfs)
    uva 10594(最小费用最大流)
  • 原文地址:https://www.cnblogs.com/hyxsolitude/p/3724261.html
Copyright © 2011-2022 走看看