zoukankan      html  css  js  c++  java
  • Numpy基础

    目录

      数据结构

      基础操作

      矩阵属性

      矩阵操作

      矩阵函数


    数据结构

    # -*- coding: utf-8 -*-
    import numpy as np
    #从文本构建ndarray
    a = np.genfromtxt("a.txt", delimiter="	", dtype=int, skip_header=0)
    print(type(a))
    print(a)
    '''
    <class 'numpy.ndarray'>
    [[1 2 3]
     [4 5 6]]
    '''
    
    #直接构造ndarray
    a = np.array([[1,2],[3,4]]) #元素类型最好设置成一致
    print(type(a))
    print(a.dtype)
    print(a)
    a = np.array([[1,2],[3,4.0]]) 
    print(type(a))
    print(a.dtype)
    print(a)
    '''
    <class 'numpy.ndarray'>
    int32
    [[1 2]
     [3 4]]
    <class 'numpy.ndarray'>
    float64
    [[ 1.  2.]
     [ 3.  4.]]
    '''
    
    #矩阵的shape
    a = np.array([[1,2,3],[4,5,6]])
    print(a.shape)
    # (2, 3)
    
    #取某个值
    print(a[1,2]) #第2行第3列
    # 6
    
    #切片
    a = np.array([1,2,3,4,5,6])
    print(a[:3]) #打印前三个值
    #[1 2 3]
    a = np.array([[1,2,3],[4,5,6],[7,8,9]])
    print(a[:,:2]) #行全取,列只取前两列
    '''
    [[1 2]
     [4 5]
     [7 8]]
    '''

     返回目录

    基础操作 

     

    # -*- coding: utf-8 -*-
    import numpy as np
    
    # 转bool类型
    a = np.array([[1,2],[3,4]]) 
    print(a == 2)
    '''
    [[False  True]
     [False False]]
    '''
    
    # 与或运算
    a = np.array([[1,2],[3,4]])
    b = np.array([[1,2],[0,4]])
    print(a&b)
    print(a|b)
    '''
    [[1 2]
     [0 4]]
    [[1 2]
     [3 4]]
    '''
    
    # 类型转换
    a = np.array(["1","2","3","4"])
    print(a.dtype)
    a = a.astype(float)
    print(a.dtype)
    print(a)
    '''
    <U1
    float64
    [ 1.  2.  3.  4.]
    '''
    
    # 获取最值
    a = np.array([[1,4],[3,2],[8,6]])
    '''
    [[1 4]
     [3 2]
     [8 6]]
    '''
    print(a.min(axis=0)) #取0轴上的最小值
    # [1 2]
    print(a.min(axis=1)) #取1轴上的最小值
    # [1 3 6]
    print(a.min()) #取最小值
    # 1
    
    # 求和
    a = np.array([[1,2],[3,4],[5,6]])
    print(a.sum(axis=0))
    print(a.sum(axis=1))
    print(a.sum())
    '''
    [ 9 12]
    [ 3  7 11]
    21
    '''
    
    # 求平均数
    a = np.array([[1,2],[3,4],[5,6]])
    print(a.mean(axis=0))
    print(a.mean(axis=1))
    print(a.mean())
    '''
    [ 3.  4.]
    [ 1.5  3.5  5.5]
    3.5
    '''

     返回目录

    矩阵属性 

    # -*- coding: utf-8 -*-
    import numpy as np
    
    a = np.arange(12)
    print(a)
    # [ 0  1  2  3  4  5  6  7  8  9 10 11]
    a = a.reshape(3,4)
    print(a)
    '''
    [[ 0  1  2  3]
     [ 4  5  6  7]
     [ 8  9 10 11]]
    '''
    
    print(a.shape) #形状
    # (3, 4)
    
    print(a.ndim) #维度
    # 2
    
    print(a.size) #大小
    # 12

     返回目录

    矩阵操作 

     

    # -*- coding: utf-8 -*-
    import numpy as np
    
    a = np.zeros((2,3)) #0矩阵
    print(a)
    # [[ 0.  0.  0.]
    #  [ 0.  0.  0.]]
    
    a = np.ones((2,3), dtype = np.int32) #1矩阵
    print(a)
    # [[1 1 1]
    #  [1 1 1]]
    
    a = np.arange(100,110,2) #自定义步长矩阵
    print(a)
    # [100 102 104 106 108]
    
    a = np.random.random((2,3)) #随机矩阵
    print(a)
    # [[ 0.51411639  0.77741782  0.5720869 ]
    #  [ 0.8042447   0.36104249  0.62305819]]
    
    a = np.linspace(1, 2, 5) #在1和2之间 平均取5个点
    print(a)
    # [ 1.    1.25  1.5   1.75  2.  ]
    
    # 四则运算
    a = np.array([2,4,6,8])
    b = np.array([1,3,5,10])
    print(a-b)
    # [ 1  1  1 -2]
    print(a-1)
    # [1 3 5 7]
    print(a**2)
    # [ 4 16 36 64]
    print(a>5)
    # [False False  True  True]
    
    #矩阵乘法
    a = np.array([[1,1],
                  [0,1]])
    b = np.array([[2,0],
                  [3,4]])
    print(a*b) #对应位置相乘
    # [[2 0]
    #  [0 4]]
    print(a.dot(b)) #矩阵相乘
    # [[5 4]
    #  [3 4]]

     返回目录

    矩阵函数 

    # -*- coding: utf-8 -*-
    import numpy as np
    
    a = np.array([[1,2],
                  [3,4]])
    print(np.exp(a))
    # [[  2.71828183   7.3890561 ]
    #  [ 20.08553692  54.59815003]]
    print(np.sqrt(a))
    # [[ 1.          1.41421356]
    #  [ 1.73205081  2.        ]]
    
    a = np.random.random((2,3)) * 10
    print(a)
    # [[ 1.61719344  2.678753    1.26624097]
    #  [ 8.54779284  2.81985938  9.78669941]]
    print(np.floor(a)) #向下取整
    # [[ 1.  2.  1.]
    #  [ 8.  2.  9.]]
    
    a = np.array([[1,2],
                  [3,4]])
    print(a.ravel()) #转化成向量
    # [1 2 3 4]
    
    print(a.T) #转置
    # [[1 3]
    #  [2 4]]
    
    #矩阵拼接
    a = np.array([[1,2],
                  [3,4]])
    b = np.array([[5,6],
                  [7,8]])
    print(np.vstack((a,b)))
    # [[1 2]
    #  [3 4]
    #  [5 6]
    #  [7 8]]
    print(np.hstack((a,b)))
    # [[1 2 5 6]
    #  [3 4 7 8]]
    
    
    #矩阵切分
    a = np.arange(24).reshape(4,6)
    print(a)
    # [[ 0  1  2  3  4  5]
    #  [ 6  7  8  9 10 11]
    #  [12 13 14 15 16 17]
    #  [18 19 20 21 22 23]]
    print(np.hsplit(a,2)) #竖着平均切2份
    # [array([[ 0,  1,  2],
    #        [ 6,  7,  8],
    #        [12, 13, 14],
    #        [18, 19, 20]]), 
    #  array([[ 3,  4,  5],
    #        [ 9, 10, 11],
    #        [15, 16, 17],
    #        [21, 22, 23]])]
    print(np.vsplit(a,2)) #横着平均切2份
    # [array([[ 0,  1,  2,  3,  4,  5],
    #        [ 6,  7,  8,  9, 10, 11]]), 
    #  array([[12, 13, 14, 15, 16, 17],
    #        [18, 19, 20, 21, 22, 23]])
    
    print(np.hsplit(a,(2,3))) #竖着在索引2,索引3的位置各切一刀
    # [array([[ 0,  1],
    #        [ 6,  7],
    #        [12, 13],
    #        [18, 19]]), 
    #  array([[ 2],
    #        [ 8],
    #        [14],
    #        [20]]), 
    #  array([[ 3,  4,  5],
    #        [ 9, 10, 11],
    #        [15, 16, 17],
    #        [21, 22, 23]])]
    
    print(np.vsplit(a,(2,3))) #横着在索引2,索引3的位置各切一刀
    # [array([[ 0,  1,  2,  3,  4,  5],
    #        [ 6,  7,  8,  9, 10, 11]]), 
    #  array([[12, 13, 14, 15, 16, 17]]), 
    #  array([[18, 19, 20, 21, 22, 23]])]
    
    #复制矩阵
    a = np.array([[1,2],
                  [3,4]])
    b = a #b和a指向同一个内存,改变b的值a也会发生改变
    print(id(a)==id(b))
    # True
    b = a.copy() #b和a的内容一样,但各自有各自的存储单元,改变b的值a不会发生改变
    print(id(a)==id(b))
    # False
    
    
    #寻找index值
    a = np.arange(20).reshape(4,5)
    # [[ 0  1  2  3  4]
    #  [ 5  6  7  8  9]
    #  [10 11 12 13 14]
    #  [15 16 17 18 19]]
    print(a.argmax(axis=0))
    # [3 3 3 3 3]
    print(a.argmax(axis=1))
    # [4 4 4 4]
    
    
    # 扩展矩阵
    a = np.array([[1,2],
                  [3,4]])
    a = np.tile(a,(2,3))
    print(a)
    # [[1 2 1 2 1 2]
    #  [3 4 3 4 3 4]
    #  [1 2 1 2 1 2]
    #  [3 4 3 4 3 4]]
    
    
    #排序
    a = np.array([[1,4],
                  [6,3]])
    b = np.sort(a,axis=0) #列排序
    print(b)
    # [[1 3]
    #  [6 4]]
    b = np.sort(a,axis=1)#行排序
    print(b)
    # [[1 4]
    #  [3 6]]
    
    a = np.array([1,4,3,2])
    print(np.argsort(a)) #打印排序索引
    # [0 3 2 1]

     返回目录

  • 相关阅读:
    Javascript自动垃圾收集机制
    Javascript深入浅出(二)
    Javascript深入浅出(一)
    递归&循环&迭代&遍历&枚举,知多少
    事件流、事件处理程序和事件对象
    弹性布局学习笔记
    css3 伪元素
    css3伪类选择器nth-of-type,:nth-last-of-type,:first-of-type,:last-of-type,:only-of-type
    css3结构伪类选择器first-child,last-child,nth-child(),nth-last-child(),only-child
    css3状态伪类选择器:checked修改按钮默认样式
  • 原文地址:https://www.cnblogs.com/itmorn/p/8149764.html
Copyright © 2011-2022 走看看