zoukankan      html  css  js  c++  java
  • 2.3AutoEncoder

    AutoEncoder是包含一个压缩和解压缩的过程,属于一种无监督学习的降维技术。

    神经网络接受大量信息,有时候接受的数据达到上千万,可以通过压缩

    提取原图片最具有代表性的信息,压缩输入的信息量,在将缩减后的数据放入神经网络中学习,如此学习起来变得轻松了

    自编码在这个时候使用,可以将自编码归为无监督学习,类似于PCA,自编码可以为属性降维

    手写体识别代码AutoEncoder

    from __future__ import division, print_function, absolute_import
    
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    # Import MNIST data
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=False)
    
    
    # Visualize decoder setting
    # Parameters
    learning_rate = 0.01
    training_epochs = 5
    batch_size = 256
    display_step = 1
    examples_to_show = 10
    
    # Network Parameters
    n_input = 784  # MNIST data input (img shape: 28*28)
    
    # tf Graph input (only pictures)
    X = tf.placeholder("float", [None, n_input])
    
    # hidden layer settings
    n_hidden_1 = 256 # 1st layer num features
    n_hidden_2 = 128 # 2nd layer num features
    weights = {
        'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
        'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
        'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
        'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
    }
    biases = {
        'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'decoder_b2': tf.Variable(tf.random_normal([n_input])),
    }
    
    # Building the encoder
    def encoder(x):
        # Encoder Hidden layer with sigmoid activation #1
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
                                       biases['encoder_b1']))
        # Decoder Hidden layer with sigmoid activation #2
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
                                       biases['encoder_b2']))
        return layer_2
    
    
    # Building the decoder
    def decoder(x):
        # Encoder Hidden layer with sigmoid activation #1
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
                                       biases['decoder_b1']))
        # Decoder Hidden layer with sigmoid activation #2
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
                                       biases['decoder_b2']))
        return layer_2
    
    
    """
    
    # Visualize encoder setting
    # Parameters
    learning_rate = 0.01    # 0.01 this learning rate will be better! Tested
    training_epochs = 10
    batch_size = 256
    display_step = 1
    
    # Network Parameters
    n_input = 784  # MNIST data input (img shape: 28*28)
    
    # tf Graph input (only pictures)
    X = tf.placeholder("float", [None, n_input])
    
    # hidden layer settings
    n_hidden_1 = 128
    n_hidden_2 = 64
    n_hidden_3 = 10
    n_hidden_4 = 2  #2D show
    
    weights = {
        'encoder_h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)),
        'encoder_h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)),
        'encoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)),
        'encoder_h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)),
    
        'decoder_h1': tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)),
        'decoder_h2': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)),
        'decoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)),
        'decoder_h4': tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)),
    }
    biases = {
        'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
        'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])),
    
        'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
        'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
        'decoder_b4': tf.Variable(tf.random_normal([n_input])),
    }
    
    
    def encoder(x):
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
                                       biases['encoder_b1']))
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
                                       biases['encoder_b2']))
        layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
                                       biases['encoder_b3']))
        layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
                                        biases['encoder_b4'])
        return layer_4
    
    
    def decoder(x):
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
                                       biases['decoder_b1']))
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
                                       biases['decoder_b2']))
        layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
                                    biases['decoder_b3']))
        layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
                                    biases['decoder_b4']))
        return layer_4
    """
    
    # Construct model
    encoder_op = encoder(X)
    decoder_op = decoder(encoder_op)
    
    # Prediction
    y_pred = decoder_op
    # Targets (Labels) are the input data.
    y_true = X
    
    # Define loss and optimizer, minimize the squared error
    cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
    
    
    # Launch the graph
    with tf.Session() as sess:
        # tf.initialize_all_variables() no long valid from
        # 2017-03-02 if using tensorflow >= 0.12
        if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
            init = tf.initialize_all_variables()
        else:
            init = tf.global_variables_initializer()
        sess.run(init)
        total_batch = int(mnist.train.num_examples/batch_size)
        # Training cycle
        for epoch in range(training_epochs):
            # Loop over all batches
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)  # max(x) = 1, min(x) = 0
                # Run optimization op (backprop) and cost op (to get loss value)
                _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
            # Display logs per epoch step
            if epoch % display_step == 0:
                print("Epoch:", '%04d' % (epoch+1),
                      "cost=", "{:.9f}".format(c))
    
        print("Optimization Finished!")
    
        # # Applying encode and decode over test set
        encode_decode = sess.run(
            y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
        # Compare original images with their reconstructions
        f, a = plt.subplots(2, 10, figsize=(10, 2))
        for i in range(examples_to_show):
            a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
            a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
        plt.show()
    
        # encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images})
        # plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels)
        # plt.colorbar()
        # plt.show()

    利用AutoEncoder进行类似于PCA的降维

    代码:

    from __future__ import division, print_function, absolute_import
    
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    
    # Import MNIST data
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('MNIST_data', one_hot=False)
    
    """
    # Visualize decoder setting
    # Parameters
    learning_rate = 0.01
    training_epochs = 5
    batch_size = 256
    display_step = 1
    examples_to_show = 10
    
    # Network Parameters
    n_input = 784  # MNIST data input (img shape: 28*28)
    
    # tf Graph input (only pictures)
    X = tf.placeholder("float", [None, n_input])
    
    # hidden layer settings
    n_hidden_1 = 256 # 1st layer num features
    n_hidden_2 = 128 # 2nd layer num features
    weights = {
        'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
        'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
        'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
        'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
    }
    biases = {
        'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'decoder_b2': tf.Variable(tf.random_normal([n_input])),
    }
    
    # Building the encoder
    def encoder(x):
        # Encoder Hidden layer with sigmoid activation #1
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
                                       biases['encoder_b1']))
        # Decoder Hidden layer with sigmoid activation #2
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
                                       biases['encoder_b2']))
        return layer_2
    
    
    # Building the decoder
    def decoder(x):
        # Encoder Hidden layer with sigmoid activation #1
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
                                       biases['decoder_b1']))
        # Decoder Hidden layer with sigmoid activation #2
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
                                       biases['decoder_b2']))
        return layer_2
    
    
    """
    
    # Visualize encoder setting
    # Parameters
    learning_rate = 0.01    # 0.01 this learning rate will be better! Tested
    training_epochs = 10
    batch_size = 256
    display_step = 1
    
    # Network Parameters
    n_input = 784  # MNIST data input (img shape: 28*28)
    
    # tf Graph input (only pictures)
    X = tf.placeholder("float", [None, n_input])
    
    # hidden layer settings
    n_hidden_1 = 128
    n_hidden_2 = 64
    n_hidden_3 = 10
    n_hidden_4 = 2  #2D show
    
    weights = {
        'encoder_h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1],)),
        'encoder_h2': tf.Variable(tf.truncated_normal([n_hidden_1, n_hidden_2],)),
        'encoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_3],)),
        'encoder_h4': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_4],)),
    
        'decoder_h1': tf.Variable(tf.truncated_normal([n_hidden_4, n_hidden_3],)),
        'decoder_h2': tf.Variable(tf.truncated_normal([n_hidden_3, n_hidden_2],)),
        'decoder_h3': tf.Variable(tf.truncated_normal([n_hidden_2, n_hidden_1],)),
        'decoder_h4': tf.Variable(tf.truncated_normal([n_hidden_1, n_input],)),
    }
    biases = {
        'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
        'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])),
    
        'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
        'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
        'decoder_b4': tf.Variable(tf.random_normal([n_input])),
    }
    
    
    def encoder(x):
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
                                       biases['encoder_b1']))
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
                                       biases['encoder_b2']))
        layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
                                       biases['encoder_b3']))
        layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
                                        biases['encoder_b4'])
        return layer_4
    
    
    def decoder(x):
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
                                       biases['decoder_b1']))
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
                                       biases['decoder_b2']))
        layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
                                    biases['decoder_b3']))
        layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
                                    biases['decoder_b4']))
        return layer_4
    
    
    # Construct model
    encoder_op = encoder(X)
    decoder_op = decoder(encoder_op)
    
    # Prediction
    y_pred = decoder_op
    # Targets (Labels) are the input data.
    y_true = X
    
    # Define loss and optimizer, minimize the squared error
    cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
    
    
    # Launch the graph
    with tf.Session() as sess:
        # tf.initialize_all_variables() no long valid from
        # 2017-03-02 if using tensorflow >= 0.12
        if int((tf.__version__).split('.')[1]) < 12 and int((tf.__version__).split('.')[0]) < 1:
            init = tf.initialize_all_variables()
        else:
            init = tf.global_variables_initializer()
        sess.run(init)
        total_batch = int(mnist.train.num_examples/batch_size)
        # Training cycle
        for epoch in range(training_epochs):
            # Loop over all batches
            for i in range(total_batch):
                batch_xs, batch_ys = mnist.train.next_batch(batch_size)  # max(x) = 1, min(x) = 0
                # Run optimization op (backprop) and cost op (to get loss value)
                _, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
            # Display logs per epoch step
            if epoch % display_step == 0:
                print("Epoch:", '%04d' % (epoch+1),
                      "cost=", "{:.9f}".format(c))
    
        print("Optimization Finished!")
    
    #     # # Applying encode and decode over test set
    #     encode_decode = sess.run(
    #         y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
    #     # Compare original images with their reconstructions
    #     f, a = plt.subplots(2, 10, figsize=(10, 2))
    #     for i in range(examples_to_show):
    #         a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
    #         a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
    #     plt.show()
    
        encoder_result = sess.run(encoder_op, feed_dict={X: mnist.test.images})
        plt.scatter(encoder_result[:, 0], encoder_result[:, 1], c=mnist.test.labels)
        plt.colorbar()
        plt.show()

    显示如下:

  • 相关阅读:
    scratch少儿编程第一季——04、想要做到有的放矢,瞄准方向很重要
    scratch少儿编程第一季——02、scratch界面介绍
    scratch少儿编程第一季——01、初识图形化界面编程的神器
    Scratch—点亮生日蜡烛
    scratch少儿编程——03、动作:运动的开始,游戏的基础。
    画一个秘密花园 | Scratch 3.0 艺术项目
    scratch少儿编程第一季——01、初识图形化界面编程的神器
    scratch少儿编程第一季——02、scratch界面介绍
    mysql优化一之查询优化
    mysql优化二之锁机制
  • 原文地址:https://www.cnblogs.com/jackchen-Net/p/8125884.html
Copyright © 2011-2022 走看看