zoukankan      html  css  js  c++  java
  • poj1556

    计算几何+最短路

    最短路是套的模版。。= =


    毕竟不是自己写的。。模版上的点竟然是从0开始的。

    难在建图。图中,比如2和12点,其间如果没有任何线段阻挡,那么边权是他们的直线距离,如果有线段阻挡,边权是inf。

    枚举每两个点,用其组成的线段与其他所有线段判断,如果相交则边权inf,如果不相交距离是其直线距离。

    #include <iostream>
    #include <math.h>
    
    #define eps 1e-8
    #define zero(x) (((x)>0?(x):-(x))<eps)
    
    #define pi acos(-1.0)
    
    
    struct point
    {
    	double x, y;
    };
    
    struct line
    {
    	point a, b;
    };
    
    //计算cross product (P1-P0)x(P2-P0)
    double xmult(point p1, point p2, point p0)
    {
    	return (p1.x - p0.x)*(p2.y - p0.y) - (p2.x - p0.x)*(p1.y - p0.y);
    }
    //两点距离
    double distance(point p1, point p2)
    {
    	return sqrt((p1.x - p2.x)*(p1.x - p2.x) + (p1.y - p2.y)*(p1.y - p2.y));
    }
    
    //判三点共线
    bool dots_inline(point p1, point p2, point p3)
    {
    	return zero(xmult(p1, p2, p3));
    }
    
    //判点是否在线段上,包括端点
    bool dot_online_in(point p, line l)
    {
    	return zero(xmult(p, l.a, l.b)) && (l.a.x - p.x)*(l.b.x - p.x) < eps && (l.a.y - p.y)*(l.b.y - p.y) < eps;
    }
    
    //判点是否在线段上,不包括端点
    bool dot_online_ex(point p, line l)
    {
    	return dot_online_in(p, l) && (!zero(p.x - l.a.x) || !zero(p.y - l.a.y)) && (!zero(p.x - l.b.x) || !zero(p.y - l.b.y));
    }
    
    //判两点在线段同侧,点在线段上返回0
    bool same_side(point p1, point p2, line l)
    {
    	return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) > eps;
    }
    
    //判两点在线段异侧,点在线段上返回0
    bool opposite_side(point p1, point p2, line l)
    {
    	return xmult(l.a, p1, l.b)*xmult(l.a, p2, l.b) < -eps;
    }
    
    //判两直线平行
    bool parallel(line u, line v)
    {
    	return zero((u.a.x - u.b.x)*(v.a.y - v.b.y) - (v.a.x - v.b.x)*(u.a.y - u.b.y));
    }
    
    //判两直线垂直
    bool perpendicular(line u, line v)
    {
    	return zero((u.a.x - u.b.x)*(v.a.x - v.b.x) + (u.a.y - u.b.y)*(v.a.y - v.b.y));
    }
    
    //判两线段相交,包括端点和部分重合
    bool intersect_in(line u, line v)
    {
    	if (!dots_inline(u.a, u.b, v.a) || !dots_inline(u.a, u.b, v.b))
    		return !same_side(u.a, u.b, v) && !same_side(v.a, v.b, u);
    	return dot_online_in(u.a, v) || dot_online_in(u.b, v) || dot_online_in(v.a, u) || dot_online_in(v.b, u);
    }
    bool intersect_ex(line u, line v)
    {
    	return opposite_side(u.a, u.b, v) && opposite_side(v.a, v.b, u);
    }
    
    //单源最短路径,bellman_ford算法,邻接阵形式,复杂度O(n^3)
    //求出源s到所有点的最短路经,传入图的大小n和邻接阵mat
    //返回到各点最短距离min[]和路径pre[],pre[i]记录s到i路径上i的父结点,pre[s]=-1
    //可更改路权类型,路权可为负,若图包含负环则求解失败,返回0
    //优化:先删去负边使用dijkstra求出上界,加速迭代过程
    #define MAXN 200
    #define inf 1000000000
    typedef double elem_t;
    
    int bellman_ford(int n, elem_t mat [][MAXN], int s, elem_t* min, int* pre){
    	int v[MAXN], i, j, k, tag;
    	for (i = 0; i < n; i++)
    		min[i] = inf, v[i] = 0, pre[i] = -1;
    	for (min[s] = 0, j = 0; j < n; j++){
    		for (k = -1, i = 0; i < n; i++)
    			if (!v[i] && (k == -1 || min[i] < min[k]))
    				k = i;
    		for (v[k] = 1, i = 0; i < n; i++)
    			if (!v[i] && mat[k][i] >= 0 && min[k] + mat[k][i] < min[i])
    				min[i] = min[k] + mat[pre[i] = k][i];
    	}
    	for (tag = 1, j = 0; tag && j <= n; j++)
    		for (tag = i = 0; i < n; i++)
    			for (k = 0; k < n; k++)
    				if (min[k] + mat[k][i] < min[i])
    					min[i] = min[k] + mat[pre[i] = k][i], tag = 1;
    	return j <= n;
    }
    
    int main()
    {
    	line l[100];
    	point p[200];
    	int n;
    	while (std::cin >> n && (n != -1))
    	{
    		int j = -1;
    		int k = 0;
    		p[0].x = 0.0, p[0].y = 5.0;
    		for (int i = 0; i < n; i++)
    		{
    			double a, b, c, d, e;
    			std::cin >> a >> b >> c >> d >> e;
    			l[++j].a.x = a, l[j].a.y = 0.0;
    			l[j].b.x = a, l[j].b.y = b;
    
    			l[++j].a.x = a, l[j].a.y = c;
    			l[j].b.x = a, l[j].b.y = d;
    
    			l[++j].a.x = a, l[j].a.y = e;
    			l[j].b.x = a, l[j].b.y = 10.0;
    
    			p[++k].x = a, p[k].y = 0.0;
    			p[++k].x = a, p[k].y = b;
    			p[++k].x = a, p[k].y = c;
    			p[++k].x = a, p[k].y = d;
    			p[++k].x = a, p[k].y = e;
    			p[++k].x = a, p[k].y = 10.0;
    		}
    		p[++k].x = 10.0, p[k].y = 5.0;
    
    		/*for (int i = 0; i <= j; i++)
    		{
    		std::cout << l[i].a.x << ' ' << l[i].a.y << " to " << l[i].b.x << ' ' << l[i].b.y << std::endl;
    		}
    		for (int i = 1; i <= k; i++)
    		{
    		std::cout << i << ' '<<p[i].x << ' ' << p[i].y << std::endl;
    		}*/
    
    		double mat[MAXN][MAXN];
    		for (int a = 0; a <= k; a++)
    		{
    			for (int b = 0; b <= k; b++)
    			{
    				line temp;
    				temp.a = p[a], temp.b = p[b];
    				bool flag = false;
    				for (int c = 1; c <= j; c++)
    				{
    					if (intersect_ex(temp, l[c]))
    					{
    						mat[a][b] = inf;
    						flag = true;
    						break;
    					}
    				}
    				if (!flag)
    				{
    					mat[a][b] = distance(p[a], p[b]);
    				}
    			}
    		}
    		/*
    		for (int a = 0; a <= k; a++)
    		{
    			for (int b = 0; b <= k; b++)
    			{
    				std::cout << a << ' ' << b << ' ' << mat[a][b] << '
    ';
    			}
    		}
    		std::cout << k << std::endl;*/
    		
    		elem_t min[MAXN];
    		int pre[MAXN];
    		bellman_ford(k+1, mat, 0, min, pre);
    		/*for (int i = 0; i <= k; i++)
    		{
    			std::cout << ' ' << min[i] << "
    ";
    		}*/
    		printf("%.2lf
    ", min[k]);
    	}
    }


  • 相关阅读:
    阿里云服务器,http免费转https详细教程
    springboot系列总结(二)---springboot的常用注解
    springboot系列总结(一)---初识springboot
    java 查询当天0点0分0秒
    mysql各个版本驱动jar包下载 mysql/mysql-connector-java/5.1.22
    泰坦尼克 学习
    切片
    忽略warning 警告
    迭代 递归 循环 遍历
    标准化 归一化
  • 原文地址:https://www.cnblogs.com/javawebsoa/p/3233978.html
Copyright © 2011-2022 走看看