problem1 link
暴力枚举即可。
problem2 link
一共有24小时,所以最多有24个顾客。设$f[x][y][z]$表示还剩下$x$把刀,现在时间是$y$,以及来过的顾客集合为$z$可以获得的最大值。
那假设第$y$小时来的顾客为$t$,来的概率为$p$,有三种情况:
(1)之前它来过,那么$f[x][y][z]=f[x][y+1][z]$
(2)之前没来过,现在也没来,$f[x][y][z]=(1-p)*f[x][y+1][z]$
(3)之前没来过,现在来了。可以选择买给他一把刀,$c_{1}=f[x-1][y+1][z|2^{t}]+v_{y}$;或者不卖给他,$c_{2}=f[x][y+1][z|2^{t}]$,所以$f[x][y][z]=max(c_{1},c_{2})*p$
另外,假设一个人第一次,第二次来的概率分别为0.2和0.4。那么上面使用的$p$是假设他之前没来过。如果第一次没来,那么第二次来的概率为$frac{0.4}{1-0.2}$
problem3 link
首先枚举字母'R'和‘F’的位置$p_{1},p_{2}$。然后计算和其他所有‘L’的答案。
首先,对于每个位置$(x,y)$,计算其函数值$g(x,y)=distance(p_{1},p_{x,y})+distance(p_{2},p_{x,y})$
然后新建一系列节点$S_{0},S_{1},S_{2},...$。
对于每个$(x,y)$,设$t=g(x,y)$。那么节点$S_{t-1}$向点$(x,y)$连有向边。
另外节点$S_{i}$到$S_{i+1}$有一条有向边。每个点$(x,y)$向四周的格子有四条有向边。
所有边的长度均为1.然后从节点$S_{0}$开始进行bfs,计算到达每个点的距离。每个‘L’字母计算的距离就是选择$p_{1},p_{2}$和该位置的答案。
code for problem1
class RotatedClock { public: string getEarliest(int hourHand, int minuteHand) { for (int i = 0; i < 12; ++i) { for (int j = 0; j < 60; j += 2) { for (int k = 0; k < 12; ++k) { if (Check(i, j, k, hourHand, minuteHand)) { return ToString(i) + ":" + ToString(j); } } } } return ""; } string ToString(int x) { stringstream ss; if (x < 10) { ss << "0" << x; } else { ss << x; } return ss.str(); } bool Check(int h, int m, int b, int hHand, int mHand) { return GetHourHand(h, m, b) == hHand && GetMinuteHand(m, b) == mHand; } int GetHourHand(int h, int m, int b) { int result = 0; if (h >= b) { result = (h - b) * 30 + m / 2; } else { result = 360 - (b - h) * 30 + m / 2; } return result; } int GetMinuteHand(int m, int b) { b *= 5; if (m >= b) { return (m - b) * 6; } else { return 360 - (b - m) * 6; } } };
code for problem2
double cache[25][24][1 << 12]; int visited[25][24][1 << 12]; class NewItemShop { public: double getMaximum(int swords, vector<string> customers) { Init(customers); memset(visited, 0, sizeof(visited)); return dfs(swords, 0, 0); } double dfs(int swords, int hour, int mask) { if (swords == 0 || hour == 24) { return 0; } if (visited[swords][hour][mask] != 0) { return cache[swords][hour][mask]; } visited[swords][hour][mask] = 1; if (!hour_[hour].inited_) { return cache[swords][hour][mask] = dfs(swords, hour + 1, mask); } int cMask = hour_[hour].mask(); double p = hour_[hour].probility_; int val = hour_[hour].value_; if ((mask & cMask) > 0) { return cache[swords][hour][mask] = dfs(swords, hour + 1, mask); } cache[swords][hour][mask] = (1 - p) * dfs(swords, hour + 1, mask); double c0 = dfs(swords, hour + 1, mask | cMask); double c1 = dfs(swords - 1, hour + 1, mask | cMask) + val; cache[swords][hour][mask] += max(c0, c1) * p; return cache[swords][hour][mask]; } private: struct HourInfo { bool is_multiple_times_; int multiple_index_; double probility_; int value_; bool inited_; HourInfo():inited_(false) {} int mask() const { if (!is_multiple_times_) { return 0; } return 1 << multiple_index_; } }hour_[24]; void Init(const vector<string>& customers) { for (int i = 0; i < 24; ++ i) { hour_[i].inited_ = false; } int multiple_num = 0; for (int i = 0; i < (int)customers.size(); ++ i) { const vector<int> a = Split(customers[i]); const int n = (int)a.size(); const int idx = n > 3 ? multiple_num ++ : 0; double cur = 1.0; for (int j = 0; j < n; j += 3) { int h = a[j]; int v = a[j + 1]; double p = a[j + 2] / 100.0 / cur; cur -= a[j + 2] / 100.0; if (n > 3) { hour_[h].is_multiple_times_ = true; hour_[h].multiple_index_ = idx; } else { hour_[h].is_multiple_times_ = false; } hour_[h].probility_ = p; hour_[h].value_ = v; hour_[h].inited_ = true; } } } std::vector<int> Split(const std::string& s) { std::vector<int> result; const int len = (int)s.length(); int idx = 0; while (idx < len) { while (idx < len && !IsDigit(s[idx])) { ++ idx; } if (idx >= len) { break; } int x = 0; while (idx < len && IsDigit(s[idx])) { x = x * 10 + s[idx++] - '0'; } result.push_back(x); } return result; } static bool IsDigit(char c) { return '0' <= c && c <= '9'; } };
code for problem3
class MeetInTheMaze { public: string getExpected(vector<string> maze) { Initialize(maze); std::vector<std::pair<int, int>> all_f_positions; std::vector<std::pair<int, int>> all_r_positions; int l_number = 0; for (int i = 0; i < height_; ++i) { for (int j = 0; j < width_; ++j) { char ch = maze_[i][j]; if (ch == 'F') { all_f_positions.push_back(std::make_pair(i, j)); } else if (ch == 'R') { all_r_positions.push_back(std::make_pair(i, j)); } else if (ch == 'L') { ++l_number; } } } int total = 0; for (auto f : all_f_positions) { for (auto r : all_r_positions) { int t = Calculate(f.first, f.second, r.first, r.second); if (t == -1) { return ""; } total += t; } } int d = (int)all_f_positions.size() * (int)all_r_positions.size() * l_number; int g = Gcd(total, d); total /= g; d /= g; std::stringstream ss; ss << total << "/" << d; return ss.str(); } ~MeetInTheMaze() { delete[] distance_; } private: int Calculate(const int f_x, const int f_y, const int r_x, const int r_y) { std::vector<std::vector<std::pair<int, int>>> new_graph( (width_ + height_) << 1); for (int i = 0; i < height_; ++i) { for (int j = 0; j < width_; ++j) { if (maze_[i][j] != '#') { int d1 = GetDistance(f_x, f_y, i, j); int d2 = GetDistance(r_x, r_y, i, j); if (d1 == -1 || d2 == -1) { continue; } int d = d1 + d2; if (d > (int)new_graph.size()) { new_graph.resize(d); } new_graph[d - 1].push_back(std::make_pair(i, j)); } } } const int nodes = (int)new_graph.size(); std::vector<int> dist(height_ * width_ + nodes, -1); dist[height_ * width_] = 0; std::queue<int> a_queue; a_queue.push(height_ * width_); const int dx[] = {1, -1, 0, 0}; const int dy[] = {0, 0, 1, -1}; while (!a_queue.empty()) { const int start = a_queue.front(); a_queue.pop(); if (start < width_ * height_) { const int sx = start / width_; const int sy = start % width_; for (int i = 0; i < 4; ++i) { int x = sx + dx[i]; int y = sy + dy[i]; if (0 <= x && x < height_ && 0 <= y && y < width_) { if (maze_[x][y] == '#') { continue; } if (dist[x * width_ + y] == -1) { dist[x * width_ + y] = dist[start] + 1; a_queue.push(x * width_ + y); } } } } else { const int new_graph_index = start - width_ * height_; for (auto son : new_graph[new_graph_index]) { int x = son.first; int y = son.second; int key = x * width_ + y; if (dist[key] == -1) { dist[key] = dist[start] + 1; a_queue.push(key); } } if (new_graph_index + 1 < nodes) { dist[start + 1] = dist[start] + 1; a_queue.push(start + 1); } } } int total = 0; for (int i = 0; i < height_; ++i) { for (int j = 0; j < width_; ++j) { if (maze_[i][j] == 'L') { if (dist[i * width_ + j] == -1) { return -1; } total += dist[i * width_ + j]; } } } return total; } int Gcd(int x, int y) { return y == 0 ? x : Gcd(y, x % y); } void Initialize(const std::vector<std::string> &maze) { maze_ = maze; height_ = (int)maze_.size(); width_ = (int)maze_[0].size(); const int total_size = width_ * width_ * height_ * height_; distance_ = new int[total_size]; memset(distance_, -1, sizeof(int) * total_size); } int GetDistance(int start_x, int start_y, int end_x, int end_y) { if (start_x > end_x || (start_x == end_x && start_y > end_y)) { std::swap(start_x, end_x); std::swap(start_y, end_y); } int key = GetKey(start_x, start_y, end_x, end_y); if (distance_[key] == -1) { CalculateDistanceFrom(start_x, start_y); } return distance_[key]; } void CalculateDistanceFrom(const int start_x, const int start_y) { std::queue<std::pair<int, int>> a_queue; a_queue.push(std::make_pair(start_x, start_y)); distance_[GetKey(start_x, start_y, start_x, start_y)] = 0; const int dx[] = {1, -1, 0, 0}; const int dy[] = {0, 0, 1, -1}; while (!a_queue.empty()) { const int sx = a_queue.front().first; const int sy = a_queue.front().second; a_queue.pop(); const int from_key = GetKey(start_x, start_y, sx, sy); for (int i = 0; i < 4; ++i) { int x = sx + dx[i]; int y = sy + dy[i]; if (0 <= x && x < height_ && 0 <= y && y < width_) { if (maze_[x][y] == '#') { continue; } int key = GetKey(start_x, start_y, x, y); if (distance_[key] != -1) { continue; } distance_[key] = distance_[from_key] + 1; a_queue.push(std::make_pair(x, y)); } } } } int GetKey(int x1, int y1, int x2, int y2) const { return x1 * width_ * height_ * width_ + y1 * height_ * width_ + x2 * width_ + y2; } int width_; int height_; std::vector<std::string> maze_; int *distance_; };