-
Study notes for Discrete Probability Distribution
The Basics of Probability
- Probability measures the amount of uncertainty of an event: a fact whose occurence is uncertain.
- Sample space refers to the set of all possible events, denoted as .
- Some properties:
- Sum rule:
- Union bound:
- Conditional probability:. To emphasize that p(A) is unconditional, p(A) is called "marginal probability", and p(B, A) is called "joint probability", where p(A, B)=p(B|A) p(A) is called the "multiplication rule" or "factorization rule".
- Total probability theorem: p(B) = p(B|A)p(A) + p(B|~A)p(~A)
- Bayes' Theorem:
Bayes' Theorem can be regarded as a rule to update a prior probability p(A) into a posterior probability p(A|B), taking into account the amount/occurrence of evidence/event B.
- Conditional independence: Two events A and B, with p(A)>0 and p(B)>0 are independent, given C, if p(A, B|C)=p(A|C) p(B|C).
- Probability mass function (p.m.f) of random variable X is a function
- Joint probability mass function of X and Y is a function
- Cumulative distribution function (c.d.f) of a random variable X is a function:
- The c.d.f describes the probability in a specific interval, whereas the p.m.f describes the probability in a specific event.
- Expectation: the expectationof a random variable X is:
- linearity: E[aX+bY]=aE[x]+bE[Y]
- if X and Y are independent: E[XY]=E[X]*E[Y]
- Markov's inequality: let X be a nonnegative random variable with , then for all
- Variance: the variance of a random variable X is: , where is called the standard deviation of the random variable X.
- Var[aX] = a2Var[X]
- if X and Y are independent, Var[X+Y]=Var[X]+Var[Y]
- Chebyshev's inequality: let X be a random variable , then for all
Bernoulli Distribution
- A (single) Bernoulli trial is an experiment whose outcome is random and can be either of two possible outcomes, "success" and "failure", or "yes" and "no". Examples of Bernoulli trials include: flipping a coin, political option poll, etc.
- The Bernoulli distribution is a discrete probability distribution ofone (a) discrete random variable X, which takes value 1 with success probability p: Pr(X=1)=p, and value 0 with failure probability Pr(X=0)=q=1-p. For formally, the Bernoulli distribution is summarized as follows:
- notation: Bern(p), where 0<p<1 is the probability of success.
- support: X={0, 1}
- p.m.f: Pr[X=0]=q=1-p, Pr[X=1]=p
- mean: E[X]=p
- variance: Var[X]=p(1-p)
- It is a special case of Binomial distribution B(n, p). Bernoulli distribution is B(1, p).
Binomial Distribution
- The Binomial distribution is the discrete probability distribution of the number of successes in a sequence ofn independent Bernoulli trials with success probabilityp, denoted asX~B(n, p).
- The Binomial distribution is often used to model the number of successes in a sample of sizen drawn with replacement from a population of sizeN. If the sampling is carried out without replacement, the draws are not independent and so the resulting distribution is a hypergeometric distribution, not a binomial one.
- The Binomial distribution is summarized as follows:
- notation: B(n, p), where n is the number of trials and p is the success probability in each trial
- support: k = {0, 1, ..., n} the number of successes
- p.m.f:
- mean: np
- variance: np(1-p)
- If n is large enough, then the skew of the distribution is not too great. In this case, a reasonable approximation to B(n, p) is given by the normal distribution: since a large n will result in difficulty to compute the p.m.f of Binomial distribution.
- one rule to determine if such approximation is reasonable, or if n is large enough is that both np and np(1-p) must be greater than 5. If both are greater than 15 then the approximation should be good.
- A second rule is than for n>5, the normal approximation is adequate if:
- Another commonly used rule holds that the normal approximation is appropriate only if everything within 3 standard deviation of its mean is within the range of possible values, that is if:
- To improve the accuracy of the approximation, we usually use a correction factor to take into account that the binomial random variable is discrete while the normal random variable is continuous. In particular, the basic idea is to treat the discrete value k as the continuous interval from k-0.5 to k+0.5.
- In addition, Poisson distribution can be used to approximate the Binomial distribution when n is very large. A rule of thumb stating that the Poisson distribution is a good approximation oof the binomial distribution if n is at least 20 and p is smaller than or equal to 0.05, and an excellent approximation if n>=100, and np<=10:
Poisson Distribution
- Poisson distribution: Let X be a discrete random variable taking values in the set of integer numbers