zoukankan      html  css  js  c++  java
  • 少标签数据学习:宾夕法尼亚大学Learning with Few Labeled Data

    在这里插入图片描述


    原文链接 小样本学习与智能前沿 。 在这个公众号后台回复“200527”,即可获得课件电子资源。

    在这里插入图片描述

    Few-shot image classification

    Three regimes of image classification

    在这里插入图片描述

    Problem formulation

    Training set consists of labeled samples from lots of “tasks”, e.g., classifying cars, cats, dogs, planes . . .
    Data from the new task, e.g., classifying strawberries has:
    在这里插入图片描述
    Few-shot setting considers the case when s is small.

    A flavor of current few-shot algorithms

    Meta-learning forms the basis for almost all current algorithms. Here’s one successful instantiation.

    Prototypical Networks [Snell et al., 2017]

    • Collect a meta-training set, this consists of a large number of related tasks
    • Train one model on all these tasks to ensure that the clustering of features of this model correctly classifies the task
    • If the test task comes from the same distribution as the meta-training tasks, we can use the clustering on the new task to classify new classes
      在这里插入图片描述

    How well does few-shot learning work today?

    在这里插入图片描述

    The key idea

    A classifier trained on a dataset (D_s) is a function F that classifies data x using
    在这里插入图片描述
    The parameters (θ^∗ = θ(D_s )) of the classifier are a statistic of the dataset Ds obtained after training. Maintaining this statistic avoids having to search over functions F at inference time.

    We cannot learn a good (sufficient) statistic using few samples. So we will search over functions at test-time more explicitly
    在这里插入图片描述

    Transductive Learning

    在这里插入图片描述## A very simple baseline

    1. Train a large deep network on the meta-training dataset with the standard classification loss
    2. Initialize a new “classifier head” on top of the logits to handle new classes
    3. Fine-tune with the few labeled data from the new task
    4. Perform transductive learning using the unlabeled test data

    with a few practical tricks like cosine annealing of step-sizes,
    mixup regularization, 16-bit training, very heavy data augmentation, and label smoothing cross-entrop

    An example

    在这里插入图片描述

    Results on benchmark datasets

    在这里插入图片描述

    The ImageNet-21k dataset

    在这里插入图片描述
    1-shot, 5-way accuracies are as high as 89%, 1-shot 20-way accuracies are about 70%.

    A proposal for systematic evaluation

    在这里插入图片描述

    A thermodynamical view of representation learning

    表征学习的热力学观点

    Transfer learning

    Let’s take an example from computer vision

    (.Zamir, A. R., Sax, A., Shen, W., Guibas, L. J., Malik, J., & Savarese, S. Taskonomy: Disentangling task transfer learning. CVPR 2018)

    在这里插入图片描述

    Information Bottleneck Principle

    信息瓶颈原则
    A generalization of rate-distortion theory for learning relevant representations of data [Tishby et al., 2000]
    在这里插入图片描述

    Z is a representation of the data X. We want

    • Z to be sufficient to predict the target Y , and
    • Z to be small in size, e.g., few number of bits.

    在这里插入图片描述
    Doing well on one task requires throwing away nuisance information [Achille & Soatto, 2017].

    The key idea

    The IB Lagrangian simply minimizes (I(X;Z)), it does not let us measure what was thrown away.
    Choose a canonical task to measure discarded information. Setting
    在这里插入图片描述
    i.e., reconstruction of data, gives a special task. It is the superset of all tasks and forces the model to learn lossless representations.

    The architecture we will focus on is
    在这里插入图片描述

    An auto-encoder

    Shanon entropy measures the complexity of data
    在这里插入图片描述
    Distortion D measures the quality of reconstruction
    在这里插入图片描述
    Rate R measures the average excess bits used to encode the representation
    在这里插入图片描述

    Rate-Distortion curve

    We know that [Alemi et al., 2017]
    在这里插入图片描述
    this is the well-known ELBO (evidence lower-bound). Let
    在这里插入图片描述
    This is a Lagrange relaxation of the fact that given a variational family and data there is an optimal value R = func(D) that best sandwiches (1).
    在这里插入图片描述

    Rate-Distortion-Classification (RDC) surface

    Let us extend the Lagrangian to
    在这里插入图片描述
    where the classification loss is
    在这里插入图片描述
    Can also include other quantities like the entropy S of the model parameters
    在这里插入图片描述
    在这里插入图片描述
    The existence of a convex surface func(R,D,C,S) = 0 tying together these functionals allows a formal connection to thermodynamics [Alemi and Fischer 2018]
    在这里插入图片描述
    Just like energy is conserved in physical processes, information is conserved in the model, either it is in the encoder-classifier pair or it is in the decoder.

    Equilibrium surface of optimal free-energy

    The RDC surface determines all possible representations that can be learnt from given data. Can solve the variational problem for F(λ,γ) to get
    在这里插入图片描述
    and
    在这里插入图片描述
    This is called the “equilibrium surface” because training converges to some point on this surface. We now construct ways to travel on the surface
    在这里插入图片描述The surface depends on data p(x,y).

    An iso-classification loss process

    A quasi-static process happens slowly enough for the system to remain in equilibrium with its surroundings, e.g., reversible expansion of an ideal gas.
    We will create a quasi-static process to travel on the RDC surface. This constraint is
    在这里插入图片描述
    e.g., if we want classification loss to be constant in time, we need
    在这里插入图片描述
    ……
    更多精彩,请下载 资源文件 了解。
    关注公众号“小样本学习与智能前沿”,回台回复“200527” ,即可获取资源文件“Learning with Few Labeled Data.pdf”
    在这里插入图片描述

    Summary

    Simple methods such as transductive fine-tuning work extremely well for few-shot learning. This is really because of powerful function approximators such as neural networks.
    The RDC surface is a fundamental quantity and enables principled methods for transfer learning. Also unlocks new paths to understanding regularization and properties of neural architecture for classical supervised learning.
    We did well in the era of big data without understanding much about data; this is unlikely to work in the age of little data.

    Email questions to pratikac@seas.upenn.edu Read more at

    1. Dhillon, G., Chaudhari, P., Ravichandran, A., and Soatto, S. (2019). A baseline for few-shot image classification. arXiv:1909.02729. ICLR 2020.
    2. Li, H., Chaudhari, P., Yang, H., Lam, M., Ravichandran, A., Bhotika, R., & Soatto, S. (2020). Rethinking the Hyperparameters for Fine-tuning. arXiv:2002.11770. ICLR 2020.
    3. Fakoor, R., Chaudhari, P., Soatto, S., & Smola, A. J. (2019). Meta-Q-Learning. arXiv:1910.00125. ICLR 2020.
    4. Gao, Y., and Chaudhari, P. (2020). A free-energy principle for representation learning. arXiv:2002.12406.
  • 相关阅读:
    超图 wpf地图控件加载地图
    MySql常用内容
    超图资料下载与环境安装
    超图SampleCode运行须知
    英语感叹词
    英语之妻子,老婆
    Pycharm设置
    yizhihx ubuntu config
    Ubuntu之网易云音乐无法启动
    linux之错误输出重定向
  • 原文地址:https://www.cnblogs.com/joselynzhao/p/12971538.html
Copyright © 2011-2022 走看看