zoukankan      html  css  js  c++  java
  • 周赛-Clique in the Divisibility Graph 分类: 比赛 2015-08-02 09:02 23人阅读 评论(3) 收藏

    Clique in the Divisibility Graph
    time limit per test1 second
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    As you must know, the maximum clique problem in an arbitrary graph is NP-hard. Nevertheless, for some graphs of specific kinds it can be solved effectively.

    Just in case, let us remind you that a clique in a non-directed graph is a subset of the vertices of a graph, such that any two vertices of this subset are connected by an edge. In particular, an empty set of vertexes and a set consisting of a single vertex, are cliques.

    Let’s define a divisibility graph for a set of positive integers A = {a1, a2, …, an} as follows. The vertices of the given graph are numbers from set A, and two numbers ai and aj (i ≠ j) are connected by an edge if and only if either ai is divisible by aj, or aj is divisible by ai.

    You are given a set of non-negative integers A. Determine the size of a maximum clique in a divisibility graph for set A.

    Input
    The first line contains integer n (1 ≤ n ≤ 106), that sets the size of set A.

    The second line contains n distinct positive integers a1, a2, …, an (1 ≤ ai ≤ 106) — elements of subset A. The numbers in the line follow in the ascending order.

    Output
    Print a single number — the maximum size of a clique in a divisibility graph for set A.

    Sample test(s)
    input
    8
    3 4 6 8 10 18 21 24
    output
    3
    Note
    In the first sample test a clique of size 3 is, for example, a subset of vertexes {3, 6, 18}. A clique of a larger size doesn’t exist in this graph.
    类似求最大最大上升子序列;

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <list>
    #include <algorithm>
    #define PI acos(-1.0)
    #define RR freopen("input.txt","r",stdin)
    #define WW freopen("output.txt","w",stdout)
    using namespace std;
    const int MOD = (int)1e9+10;
    const double eps = 1e-9;
    const int INF = 0x3f3f3f3f;
    const int MAX = 1e6+10;
    int Dp[MAX];
    int a[MAX];
    int main()
    {
        int n,i,j,sum;
        while(scanf("%d",&n)!=EOF)
        {
            for(i=0; i<n; i++)
            {
                scanf("%d",&a[i]);
            }
            sum=0;
            for(i=n-1; i>=0; i--)
            {
                Dp[a[i]]=1;
                for( j=2; a[i]*j<MAX; j++)
                {
                    Dp[a[i]]=max(Dp[a[i]],Dp[a[i]*j]+1);//Dp[a[i]*j]记录的是以它为开头的子序列的最大长度
                }
                sum=max(sum,Dp[a[i]]);//找到最大的子序列
            }
            printf("%d
    ",sum);
        }
        return 0;
    }

    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    Leetcode Power of Two
    Leetcode Reverse Integer
    Leetcode Add Digits
    Leetcode Roman to Integer
    Python 函数的定义语法
    Python 函数的三种定义方式
    Python 函数的定义与调用
    Python 函数分类
    Python 为什么要使用函数
    Python 文件的二进制读写
  • 原文地址:https://www.cnblogs.com/juechen/p/4721944.html
Copyright © 2011-2022 走看看