zoukankan      html  css  js  c++  java
  • 周赛-Clique in the Divisibility Graph 分类: 比赛 2015-08-02 09:02 23人阅读 评论(3) 收藏

    Clique in the Divisibility Graph
    time limit per test1 second
    memory limit per test256 megabytes
    inputstandard input
    outputstandard output
    As you must know, the maximum clique problem in an arbitrary graph is NP-hard. Nevertheless, for some graphs of specific kinds it can be solved effectively.

    Just in case, let us remind you that a clique in a non-directed graph is a subset of the vertices of a graph, such that any two vertices of this subset are connected by an edge. In particular, an empty set of vertexes and a set consisting of a single vertex, are cliques.

    Let’s define a divisibility graph for a set of positive integers A = {a1, a2, …, an} as follows. The vertices of the given graph are numbers from set A, and two numbers ai and aj (i ≠ j) are connected by an edge if and only if either ai is divisible by aj, or aj is divisible by ai.

    You are given a set of non-negative integers A. Determine the size of a maximum clique in a divisibility graph for set A.

    Input
    The first line contains integer n (1 ≤ n ≤ 106), that sets the size of set A.

    The second line contains n distinct positive integers a1, a2, …, an (1 ≤ ai ≤ 106) — elements of subset A. The numbers in the line follow in the ascending order.

    Output
    Print a single number — the maximum size of a clique in a divisibility graph for set A.

    Sample test(s)
    input
    8
    3 4 6 8 10 18 21 24
    output
    3
    Note
    In the first sample test a clique of size 3 is, for example, a subset of vertexes {3, 6, 18}. A clique of a larger size doesn’t exist in this graph.
    类似求最大最大上升子序列;

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <cmath>
    #include <queue>
    #include <stack>
    #include <map>
    #include <list>
    #include <algorithm>
    #define PI acos(-1.0)
    #define RR freopen("input.txt","r",stdin)
    #define WW freopen("output.txt","w",stdout)
    using namespace std;
    const int MOD = (int)1e9+10;
    const double eps = 1e-9;
    const int INF = 0x3f3f3f3f;
    const int MAX = 1e6+10;
    int Dp[MAX];
    int a[MAX];
    int main()
    {
        int n,i,j,sum;
        while(scanf("%d",&n)!=EOF)
        {
            for(i=0; i<n; i++)
            {
                scanf("%d",&a[i]);
            }
            sum=0;
            for(i=n-1; i>=0; i--)
            {
                Dp[a[i]]=1;
                for( j=2; a[i]*j<MAX; j++)
                {
                    Dp[a[i]]=max(Dp[a[i]],Dp[a[i]*j]+1);//Dp[a[i]*j]记录的是以它为开头的子序列的最大长度
                }
                sum=max(sum,Dp[a[i]]);//找到最大的子序列
            }
            printf("%d
    ",sum);
        }
        return 0;
    }

    版权声明:本文为博主原创文章,未经博主允许不得转载。

  • 相关阅读:
    win7(64)未在本地计算机上注册“Microsoft.Jet.OLEDB.4.0”提供程序的解决办法
    很方便的工具——代码生成工具之Winform查询列表界面生成
    程序员十几个常用网站
    优秀程序员不得不知道的20个位运算技巧
    unset()索引数组
    git 撤销修改
    git 版本回退
    git 命令详解
    git多账户配置
    Git的.ssh文件夹的内容
  • 原文地址:https://www.cnblogs.com/juechen/p/4721944.html
Copyright © 2011-2022 走看看