zoukankan      html  css  js  c++  java
  • 最大流算法

      链接http://www.cnblogs.com/longdouhzt/archive/2012/05/20/2510753.html

      1 #include <iostream>
      2 #include <string>
      3 #include <vector>
      4 #include <cstdlib>
      5 #include <cmath>
      6 #include <map>
      7 #include <algorithm>
      8 #include <list>
      9 #include <ctime>
     10 #include <set>
     11 #include <string.h>
     12 #include <queue>
     13 using namespace std;
     14 
     15 int maxData = 0x3fffffff;
     16 
     17 int augment(int des, vector<int> pre, vector<vector<int> > path) {
     18     if (pre[des] == -1) //残留图中不再存在增广路径
     19         return -1;
     20     else {
     21         int res = maxData;
     22         int cur_des = des;
     23         int cur_pri = pre[des];
     24         while (cur_pri != -1) {
     25             res = min(res, path[cur_pri][cur_des]);
     26             cur_des = cur_pri;
     27             if (pre[cur_pri] == -1)
     28                 break;
     29             cur_pri = pre[cur_pri];
     30         }
     31         return res;
     32     }
     33 }
     34 int SPFA(int s, int des, vector<int> &pre, vector<vector<int> > path) {
     35     int n = path.size();
     36     queue<int> myqueue;
     37     int i;
     38     vector<int> d(n, -1);
     39     for (i = 0; i < n; ++i) { //初始化前驱
     40         pre[i] = -1;
     41     }
     42     for (i = 0; i < n; ++i) {
     43         d[i] = maxData; //将除源点以外的其余点的距离设置为无穷大
     44     }
     45     vector<bool> final(n, false); //记录顶点是否在队列中,SPFA算法可以入队列多次
     46     vector<int> cnt(n, 0); //记录顶点入队列次数
     47     d[s] = 0; //源点的距离为0
     48     final[s] = true;
     49     cnt[s]++; //源点的入队列次数增加
     50     myqueue.push(s);
     51     int topint;
     52     while (!myqueue.empty()) {
     53         topint = myqueue.front();
     54         myqueue.pop();
     55         final[topint] = false;
     56         for (i = 0; i < n; ++i) {
     57             if (d[topint] < maxData && d[i] > d[topint] + path[topint][i]
     58                     && path[topint][i] > 0) {
     59                 d[i] = d[topint] + path[topint][i];
     60                 pre[i] = topint;
     61                 if (!final[i]) { //判断是否在当前的队列中
     62                     final[i] = true;
     63                     cnt[i]++;
     64                     if (cnt[i] >= n) //当一个点入队的次数>=n时就证明出现了负环。
     65                         return true; //剩余网络中不会出现负数,且单位费用相当于1,这种算法更适合最小费用最大流
     66                     myqueue.push(i);
     67                 }
     68             }
     69         }
     70     }
     71     return augment(des, pre, path); //返回增广路径的值
     72 }
     73 
     74 int BFS(int src, int des, vector<int>& pre, vector<vector<int> > capacity) { //EK算法使用BFS寻找增广路径
     75     queue<int> myqueue;
     76     int i;
     77     int n = capacity.size(); //如果没错的话应该和pre的size一样
     78     vector<int> flow(n, 0); //标记从源点到当前节点实际还剩多少流量可用
     79     while (!myqueue.empty()) //队列清空
     80         myqueue.pop();
     81     for (i = 0; i < n; ++i) { //初始化前驱
     82         pre[i] = -1;
     83     }
     84     flow[src] = maxData; //初始化源点的流量为无穷大
     85     myqueue.push(src);
     86     while (!myqueue.empty()) {
     87         int index = myqueue.front();
     88         myqueue.pop();
     89         if (index == des) //找到了增广路径
     90             break;
     91         for (i = 0; i < n; ++i) { //遍历所有的结点
     92             if (i != src && capacity[index][i] > 0 && pre[i] == -1) {
     93                 pre[i] = index; //记录前驱
     94                 flow[i] = min(capacity[index][i], flow[index]); //关键:迭代的找到增量
     95                 myqueue.push(i);
     96             }
     97         }
     98     }
     99     if (pre[des] == -1) //残留图中不再存在增广路径
    100         return -1;
    101     else
    102         return flow[des];
    103 }
    104 int maxFlow(int src, int des, vector<vector<int> > capacity) {
    105 
    106     int increasement = 0; //增广路径的值
    107     int sumflow = 0; //最大流
    108     int n = capacity.size();
    109     vector<int> pre(n, -1); //标记在这条路径上当前节点的前驱,同时标记该节点是否在队列中
    110     while ((increasement = BFS(src, des, pre, capacity)) != -1) {
    111         int k = des; //利用前驱寻找路径
    112         while (k != src) {
    113             int last = pre[k];
    114             capacity[last][k] -= increasement; //改变正向边的容量
    115             capacity[k][last] += increasement; //改变反向边的容量
    116             k = last;
    117         }
    118         sumflow += increasement;
    119     }
    120     return sumflow;
    121 }
    122 
    123 int main() {
    124     vector<vector<int> > path(4, vector<int>(4, 0)); //记录残留网络的容量
    125     vector<int> d(4, maxData);
    126     for (int i = 0; i < 4; i++)
    127         path[i][i] = maxData;
    128     path[0][1] = path[1][0] = path[2][3] = 1;
    129     path[1][2] = 5;
    130     path[0][2] = 3;
    131     path[1][3] = 2;
    132     path[2][1] = 2;
    133     path[0][3] = 3;
    134     int sum = maxFlow(0, 3, path);
    135     cout << sum;
    136     return 0;
    137 }
  • 相关阅读:
    867-转置矩阵
    704-二分查找
    选择排序
    999-车的可用捕获量
    66-加一
    观察者模式(1)
    命令模式(3)-宏命令
    命令模式(2)-命令接口中的撤销方法
    接口测试
    移动端测试
  • 原文地址:https://www.cnblogs.com/kakamilan/p/2634072.html
Copyright © 2011-2022 走看看