越学越简单,真是越学越简单啊
看视频的时候着实被那复杂的函数调用图吓到了.看代码的时候发现条理还是很清晰的,远没有没想象的那么复杂.
这节创建了俩内核线程,然后运行第一个线程,再由第一个切换到第二个.
kern_init:
在vmm_init后加了一个proc_init
在最末位加了个cpu_idel
proc.c&.h
枚举类proc_state定义了进程生命周期里的各种状态
// process's state in his life cycle
enum proc_state {
PROC_UNINIT = 0, // uninitialized
PROC_SLEEPING, // sleeping
PROC_RUNNABLE, // runnable(maybe running)
PROC_ZOMBIE, // almost dead, and wait parent proc to reclaim his resource
};
各状态间的转化:
alloc_proc RUNNING
+ +--<----<--+
+ + proc_run +
V +-->---->--+
PROC_UNINIT -- proc_init/wakeup_proc --> PROC_RUNNABLE -- try_free_pages/do_wait/do_sleep --> PROC_SLEEPING --
A + +
| +--- do_exit --> PROC_ZOMBIE +
+ +
-----------------------wakeup_proc----------------------------------
proc_struct,就课程里讲的那个进程控制块(PCB)
struct proc_struct {
enum proc_state state; // Process state
int pid; // Process ID
int runs; // the running times of Proces
uintptr_t kstack; // Process kernel stack
volatile bool need_resched; // bool value: need to be rescheduled to release CPU?
struct proc_struct *parent; // the parent process
struct mm_struct *mm; // Process's memory management field
struct context context; // Switch here to run process
struct trapframe *tf; // Trap frame for current interrupt
uintptr_t cr3; // CR3 register: the base addr of Page Directroy Table(PDT)
uint32_t flags; // Process flag
char name[PROC_NAME_LEN + 1]; // Process name
list_entry_t list_link; // Process link list
list_entry_t hash_link; // Process hash list
};
list_entry_t proc_list 链表形式的进程集合
list_entry_t hash_list[1024] 散列表形式的进程集合
proc_struct *idleproc 0号进程,作用是不断检查当前有无处于就绪状态的进程,有则立即运行
proc_struct *initproc 本实验中测试用的进程,打印一句 hello world
static int nr_process 线程计数器
alloc_proc:分配一个PCB并初始化
各种成员变量清零
state设为UNINIT
pid=-1
cr3=内核页目录表基址(物理地址)
kernel_thread(fn,arg,clone_flag) :创建内核线程
创建一个临时trapframe
CS,DS,SS,ES均取内核态的对应值
ebx=fn
edx=arg
eip=kernel_thread_entry //中断返回时从kernel_thread_entry继续
kernel_thread_entry在entry中定义:把arg做参数调用fn,把fn返回值做参数调用do_exit
调用do_fork(clone_flags|CLONE_VM,0,&tf)
do_fork: 根据tf,stack,clone_tf创建新线程
- 分配并初始化进程控制块(alloc_proc函数);
- 分配并初始化内核栈(setup_kstack函数,分配两个页当栈使唤);
- 根据clone_flag标志复制或共享进程内存管理结构(copy_mm函数,本实验不用mm,返回空);
- 设置进程在内核(将来也包括用户态)正常运行和调度所需的中断帧和执行上下文(copy_thread函数);
- 分配pid(get_pid函数)
- 把设置好的进程控制块放入hash_list和proc_list两个全局进程链表中;
- 自此,进程已经准备好执行了,把进程状态设置为“就绪”态;
- 设置返回码为子进程的id号。
copy_thread:
proc->tf = (struct trapframe *)(proc->kstack + KSTACKSIZE) - 1;
//在内核堆栈的顶部设置中断帧大小的一块栈空间
*(proc->tf) = *tf; //拷贝在kernel_thread函数建立的临时中断帧的初始值
proc->tf->tf_regs.reg_eax = 0;
//设置子进程/线程执行完do_fork后的返回值
proc->tf->tf_esp = esp; //设置中断帧中的栈指针esp
proc->tf->tf_eflags |= FL_IF; //使能中断
proc->context.eip = (uintptr_t)forkret; //trapentry.s定义,把esp压栈,调用__trapet
proc->context.esp = (uintptr_t)(proc->tf); //context.esp赋值为当前栈顶
get_pid:分配pid
这个比较难理解.last_pid=上一次分配的pid.当分配超过MAX_PID时从1开始重新分配
(last_pid,next_safe)指定了一段连续的未分配的pid区间.如果last_pid < next_safe时直接分配last_pid+1,否则以1为单位增加pid,每次增加都遍历整个proc_list查重,并更新next_safe,如果冲突了就再增1,从头再判断.
static int
get_pid(void) {
static_assert(MAX_PID > MAX_PROCESS);
struct proc_struct *proc;
list_entry_t *list = &proc_list, *le;
static int next_safe = MAX_PID, last_pid = MAX_PID;
if (++ last_pid >= MAX_PID) {
last_pid = 1;
goto inside;
}
if (last_pid >= next_safe) {
inside:
next_safe = MAX_PID;
repeat:
le = list;
while ((le = list_next(le)) != list) {
proc = le2proc(le, list_link);
if (proc->pid == last_pid) {
if (++ last_pid >= next_safe) {
if (last_pid >= MAX_PID) {
last_pid = 1;
}
next_safe = MAX_PID;
goto repeat;
}
}
else if (proc->pid > last_pid && next_safe > proc->pid) {
next_safe = proc->pid;
}
}
}
return last_pid;
}
proc_init:
void proc_init(void) {
int i;
//初始化proc_list和hash_list
list_init(&proc_list);
for (i = 0; i < HASH_LIST_SIZE; i ++) {
list_init(hash_list + i);
}
//给idleproc分配一个PCB
if ((idleproc = alloc_proc()) == NULL) {
panic("cannot alloc idleproc.
");
}
idleproc->pid = 0; //设为0号进程
idleproc->state = PROC_RUNNABLE; //可运行
idleproc->kstack = (uintptr_t)bootstack; //kstack指向全句内核栈,在entry.S里用汇编定义,大小8KB
idleproc->need_resched = 1; //需要重新调度
set_proc_name(idleproc, "idle"); //命名
nr_process ++; //进程数+1
current = idleproc;
int pid = kernel_thread(init_main, "Hello world!!", 0);
if (pid <= 0) {
panic("create init_main failed.
");
}
initproc = find_proc(pid);
set_proc_name(initproc, "init");
assert(idleproc != NULL && idleproc->pid == 0);
assert(initproc != NULL && initproc->pid == 1);
}
cpu_idle: 无限循环检查当前线程的need_resched,为真时调用schedule()
schedule:基于FIFO的调度算法
保存中断开关状态
从当前进程往后遍历,选择下一个RUNNABLE的进程调用proc_run
恢复中断开关状态
proc_run:
更新tss的特权态0下的栈顶指针esp0为新进程的栈顶
更新CR3位新进程页目录表物理地址,完成进程间页表切换
switch切换当前进程和新进程的上下文
switch_to:
.text
.globl switch_to
switch_to: # switch_to(from, to)
# save from's registers
movl 4(%esp), %eax # eax points to from
popl 0(%eax) # save eip !popl
movl %esp, 4(%eax) # save esp::context of from
movl %ebx, 8(%eax) # save ebx::context of from
movl %ecx, 12(%eax) # save ecx::context of from
movl %edx, 16(%eax) # save edx::context of from
movl %esi, 20(%eax) # save esi::context of from
movl %edi, 24(%eax) # save edi::context of from
movl %ebp, 28(%eax) # save ebp::context of from
# restore to's registers
movl 4(%esp), %eax # not 8(%esp): popped return address already
# eax now points to to
movl 28(%eax), %ebp # restore ebp::context of to
movl 24(%eax), %edi # restore edi::context of to
movl 20(%eax), %esi # restore esi::context of to
movl 16(%eax), %edx # restore edx::context of to
movl 12(%eax), %ecx # restore ecx::context of to
movl 8(%eax), %ebx # restore ebx::context of to
movl 4(%eax), %esp # restore esp::context of to
pushl 0(%eax) # push eip
ret
当调用switch_to(&(from->context), &(to->context)),进入它的第一行代码时,此时的栈布局为:
|to.context |高地址
|from.context |
|ret address |<---esp
整个switch_to的功能为:
令eax=from.context
把各个寄存器保存到from.context里
令eax=to.context
把to.context恢复到各个寄存器里,把to.context.eip压栈
此时进行ret,栈顶出栈作为eip,返回到的地址就变成了to.context.eip,进程切换完成
对于进程init而言,我们前面把它的context.eip设为了forkret,具体功能为,把esp压栈,调用中断返回函数__trapet,进而将trapframe中的值恢复到的各个寄存器中.eip再次变更为trapframe.eip,即kernel_thread_entry函数,作用为把edx做参数调用ebx对应的函数,edx和ebx也在trapframe中分别指定为"hello world"和init_main,调用完init_main后再把返回值做参数调用do_exit.而do_exit负责退出进程,整个lab4内容结束.