zoukankan      html  css  js  c++  java
  • 2018 ICPC南京网络赛 A An Olympian Math Problem(数论题)

    Alice, a student of grade 6, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:

    We denote k!:

    k! = 1 × 2 × ⋯ × (k - 1) × k

    We denote S:

    S = 1 × 1! + 2 × 2! + ⋯ + (n1× (n1)!

    Then S module n is ____________

    You are given an integer n.

    You have to calculate S modulo n.

    Input

    The first line contains an integer T(T1000), denoting the number of test cases.

    For each test case, there is a line which has an integer n.

    It is guaranteed that ≤ ≤ 1018.

    Output

    For each test case, print an integer S modulo n.

    Hint

    The first test is: × 11, and 1 modulo 2 is 1.

    The second test is: × 1× 25 , and 5 modulo 3 is 2.

    样例输入

    2
    2
    3

    样例输出

    1
    2

    题意:

    已知S = 1 × 1! + 2 × 2! + ⋯ + (n1× (n1)!,求S%n的值。

    思路:

    直接上结论吧,S%n=n-1

    #include<iostream> 
    using namespace std;
    typedef long long ll;
    int main()
    {
        int t;
        cin>>t;
        while(t--)
        {
            ll n;
            cin>>n;
            cout<<n-1<<endl;
        }
        return 0;
    }
  • 相关阅读:
    Ratchet(WebSockets for PHP)的官方TUTORIALS 的实践
    TCP_Wrappers访问控制
    PAM认证机制
    AIDE入侵检测系统
    使用gpg来加密数据
    openssl数据加密
    搭建私有CA
    进程概念
    进程管理命令
    Linux的信号管理
  • 原文地址:https://www.cnblogs.com/kannyi/p/9572101.html
Copyright © 2011-2022 走看看