题意:
一个整型数组,含有 N 个数,将这 N 个数分成连续的 M 段,使得这 M 段每段的和中的最大值最小,输出最小值。
思路:
1. 很容易想到动态规划上面去了 dp[i, k] = min{dp[i, k], max{dp[j, k-1], subsum[j+1, i]}};
2. 比划了下,用斜率优化可不可以做,但是感觉时间和空间上面不允许。最终讨论里面有关于二分搜索的解法:
3. 题目要求的是“最大值的下界”,找到最下界:Ai 是数组中的最大值,最上界是:所有的和。根据上、下界二分搜索看中间值能把数组按题意
分割成几份,最终的时间复杂度为:O(N*log(HIGH-LOW));
#include <iostream>
#include <algorithm>
using namespace std;
const int MAXN = 100010;
int n, m, seq[MAXN];
int binarysearch(int low, int high) {
while (low <= high) {
int mid = (low + high) / 2;
int count = 1, sum = 0;
for (int i = 0; i < n; i++) {
if (sum + seq[i] <= mid)
sum += seq[i];
else
sum = seq[i], count += 1;
}
if (count > m)
low = mid + 1;
else
high = mid - 1;
}
return low;
}
int main() {
while (scanf("%d%d", &n, &m) != EOF) {
int maxnum = 0, sum = 0;
for (int i = 0; i < n; i++) {
scanf("%d", &seq[i]);
sum += seq[i];
maxnum = max(maxnum, seq[i]);
}
printf("%d\n", binarysearch(maxnum, sum));
}
return 0;
}