思路:
1. 把每天分成两个集:Xi(第 i 天用剩的餐巾),Yi(第 i 天需要的餐巾)
2. s 向 X 引弧,容量为 ri,费用为 0;Y 向 t 引弧,容量为 ri,费用为 0;s 向 Y 引弧,容量为无穷大,费用为 p
3. 由于每天用剩下的餐巾可以分为下面三种情况:
a. 什么也不做,留着当做第二天的旧餐巾: Xi 向 Xi+1 引弧,容量为无穷大,费用为 0;
b. 送给快洗部,相当于:Xi 向 Yi+m 引弧,容量为无穷大,费用为 f;
c. 送给慢洗部,相当于:Xi 向 Yi+n 引弧,容量为无穷大,费用为 s;
4. 求上面二分图的最小费用最大流,因为最大流一定能保证 Yi->t 为满弧,满足约束条件。最小的费用即是要输出的结果。
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
using namespace std;
const int MAXN = 2010;
const int INFS = 0x3FFFFFFF;
struct edge {
int from, to, cap, flow, cost;
edge(int _from, int _to, int _cap, int _flow, int _cost)
: from(_from), to(_to), cap(_cap), flow(_flow), cost(_cost) {}
};
class MCMF {
public:
void initdata(int n) {
this->n = n;
edges.clear();
for (int i = 0; i < n; i++)
G[i].clear();
}
void addedge(int u, int v, int cap, int cost) {
edges.push_back(edge(u, v, cap, 0, cost));
edges.push_back(edge(v, u, 0, 0, -cost));
G[u].push_back(edges.size() - 2);
G[v].push_back(edges.size() - 1);
}
bool SPFA(int s, int t, int& flow, int& cost) {
for (int i = 0; i < n; i++)
d[i] = INFS, inq[i] = false;
queue<int> Q;
Q.push(s);
d[s] = 0, inq[s] = true, p[s] = 0, a[s] = INFS;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
inq[u] = false;
for (int i = 0; i < G[u].size(); i++) {
edge& e = edges[G[u][i]];
if (e.cap > e.flow && d[e.to] > d[u] + e.cost) {
d[e.to] = d[u] + e.cost;
p[e.to] = G[u][i];
a[e.to] = min(a[u], e.cap - e.flow);
if (!inq[e.to]) {
inq[e.to] = true;
Q.push(e.to);
}
}
}
}
if (d[t] == INFS) return false;
flow += a[t];
cost += a[t] * d[t];
int u = t;
while (u != s) {
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
}
int mincost(int s, int t) {
int flow = 0, cost = 0;
while (SPFA(s, t, flow, cost));
return cost;
}
private:
vector<edge> edges;
vector<int> G[MAXN];
int n, d[MAXN], p[MAXN], a[MAXN];
bool inq[MAXN];
};
MCMF mcmf;
int main() {
int n, cost;
int fast, fastcost, slow, slowcost;
scanf("%d%d", &n, &cost);
scanf("%d%d", &fast, &fastcost);
scanf("%d%d", &slow, &slowcost);
int s = 0, t = 2*n+1;
mcmf.initdata(t + 1);
for (int i = 1; i <= n; i++) {
int need;
scanf("%d", &need);
mcmf.addedge(s, i, need, 0);
mcmf.addedge(i+n, t, need, 0);
mcmf.addedge(s, i+n, INFS, cost);
}
for (int i = 1; i <= n; i++) {
if (i + 1 <= n)
mcmf.addedge(i, i+1, INFS, 0);
if (i + fast <= n)
mcmf.addedge(i, i+n+fast, INFS, fastcost);
if (i + slow <= n)
mcmf.addedge(i, i+n+slow, INFS, slowcost);
}
printf("%d\n", mcmf.mincost(s, t));
return 0;
}