zoukankan      html  css  js  c++  java
  • ML.NET调用Tensorflow模型示例——MNIST

    ML.NET在不久前发行了1.0版本,在考虑这一新轮子的实际用途时,最先想到的是其能否调用已有的模型,特别是最被广泛使用的Tensorflow模型。于是在查找了不少资料后,有了本篇示例。希望可以有抛砖引玉之功。

    环境

    Tensorflow 1.13.1
    Microsoft.ML 1.0.0
    Microsoft.ML.TensorFlow 0.12.0
    netcoreapp2.2

    训练模型

    这里为了方便,利用Keras的API减少所需的代码。

    import tensorflow as tf
    mnist = tf.keras.datasets.mnist
    
    (x_train, y_train),(x_test, y_test) = mnist.load_data()
    x_train, x_test = x_train / 255.0, x_test / 255.0
    
    model = tf.keras.models.Sequential([
      tf.keras.layers.Flatten(input_shape=(28, 28)),
      tf.keras.layers.Dense(512, activation=tf.nn.relu),
      tf.keras.layers.Dropout(0.2),
      tf.keras.layers.Dense(10, activation=tf.nn.softmax)
    ])
    model.compile(optimizer='adam',
                  loss='sparse_categorical_crossentropy',
                  metrics=['accuracy'])
    
    model.fit(x_train, y_train, epochs=5)
    model.evaluate(x_test, y_test)
    model.save('model.h5')
    

    得到的模型精度在98%以上,不错的结果。

    检验模型

    加载已训练的模型,用某一测试数据验证结果。

    with CustomObjectScope({'GlorotUniform': glorot_uniform()}):
        model = load_model('model.h5')
    
        data = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.027450980392156862, 0.09411764705882353, 0.5019607843137255, 0.5450980392156862, 0.5411764705882353, 0.7490196078431373, 0.7058823529411765, 0.9921568627450981, 0.7490196078431373, 0.5411764705882353, 0.18823529411764706, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.16862745098039217, 0.1843137254901961, 0.47058823529411764, 0.7294117647058823, 0.9882352941176471, 0.9882352941176471, 0.9921568627450981, 0.9882352941176471, 0.9882352941176471, 0.9882352941176471, 0.9882352941176471, 0.9921568627450981, 0.9882352941176471, 0.8901960784313725, 0.11372549019607843, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.07450980392156863, 0.6431372549019608, 0.9647058823529412, 0.9921568627450981, 0.9882352941176471, 0.9882352941176471, 0.8901960784313725, 0.7176470588235294, 0.7215686274509804, 0.6352941176470588, 0.27058823529411763, 0.27058823529411763, 0.27058823529411763, 0.30980392156862746, 0.8901960784313725, 0.9882352941176471, 0.17647058823529413, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.27450980392156865, 0.9882352941176471, 0.9882352941176471, 0.9921568627450981, 0.9215686274509803, 0.30196078431372547, 0.11372549019607843, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03529411764705882, 0.7607843137254902, 0.8901960784313725, 0.11372549019607843, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.027450980392156862, 0.2549019607843137, 0.5372549019607843, 0.788235294117647, 0.6823529411764706, 0.12549019607843137, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7098039215686275, 0.9882352941176471, 0.7176470588235294, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03529411764705882, 0.5019607843137255,
                1.0, 0.9764705882352941, 0.45098039215686275, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4470588235294118, 0.9882352941176471, 0.9921568627450981, 0.5176470588235295, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5254901960784314, 0.9411764705882353, 0.9882352941176471, 0.47843137254901963, 0.09803921568627451, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03529411764705882, 0.6509803921568628, 0.9411764705882353, 0.9882352941176471, 0.6588235294117647, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.20784313725490197, 0.7098039215686275, 0.9882352941176471, 0.9882352941176471, 0.4549019607843137, 0.00784313725490196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.027450980392156862, 0.25882352941176473, 0.9529411764705882, 1.0, 0.9764705882352941, 0.24705882352941178, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.7294117647058823, 0.9882352941176471, 0.9882352941176471, 0.8549019607843137, 0.29411764705882354, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.19215686274509805, 0.8941176470588236, 0.9882352941176471, 0.9882352941176471, 0.8666666666666667, 0.12549019607843137, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5333333333333333, 0.9137254901960784, 0.9882352941176471, 0.8901960784313725, 0.4666666666666667, 0.09803921568627451, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.12549019607843137, 0.8235294117647058, 0.9803921568627451, 0.9921568627450981, 0.9058823529411765, 0.18823529411764706, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.34901960784313724, 0.8705882352941177, 0.9921568627450981, 0.9921568627450981, 0.6196078431372549, 0.0, 0.0, 0.0, 0.043137254901960784, 0.13333333333333333, 0.4627450980392157, 0.027450980392156862, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6313725490196078, 0.9882352941176471, 0.9882352941176471, 0.41568627450980394, 0.0, 0.03529411764705882, 0.1843137254901961, 0.34901960784313724, 0.796078431372549, 0.9921568627450981, 0.9568627450980393, 0.2196078431372549, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6313725490196078, 0.9882352941176471,
                0.9882352941176471, 0.7450980392156863, 0.7254901960784313, 0.7725490196078432, 0.9882352941176471, 0.9882352941176471, 0.8666666666666667, 0.6784313725490196, 0.2196078431372549, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.47058823529411764, 0.9882352941176471, 0.9882352941176471, 0.9882352941176471, 0.9921568627450981, 0.9882352941176471, 0.9882352941176471, 0.9882352941176471, 0.3764705882352941, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0196078431372549, 0.21176470588235294, 0.5372549019607843, 0.5372549019607843, 0.7450980392156863, 0.5372549019607843, 0.21176470588235294, 0.08627450980392157, 0.00784313725490196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
    
        pred = model.predict(np.array(data).reshape(1, 28, 28))
        print(pred.argmax())
    

    执行以上脚本得到的结果为2。

    可以将结果更形象地显示出来。

    plt.imshow(np.array(data).reshape(28, 28), cmap='Greys')
    plt.show()
    

    转换模型文件

    Keras保存的文件格式是h5,并不能直接被ML.NET调用,所以需要先转换成pb格式。

    方法是使用开源脚本——keras_to_tensorflow,直接调用如下命令即可完成转换。

    python keras_to_tensorflow.py 
        --input_model="path/to/keras/model.h5" 
        --output_model="path/to/save/model.pb"
    

    ML.NET

    在ML.NET中调用已训练的模型可分为这样几步:

    1. 建立MLContext
    2. 加载模型文件
    3. 创建IDataView对象,用作Fit方法的传入参数
    4. 建立模型管道,这里是TensorFlowEstimator对象
    5. 调用Fit方法,获得TensorFlowTransformer对象
    6. 构建预测引擎,其输入与输出对象对应模型中的输入层与输出层
    7. 执行预测方法

    所有代码如下所示:

    class Program
    {
        static void Main(string[] args)
        {
            var mlContext = new MLContext();
            var tensorFlowModel = mlContext.Model.LoadTensorFlowModel(@"D:workspace	ensorflowsaved_model.pb");
            //var schema = tensorFlowModel.GetModelSchema();
            var data = GetTensorData();
            var idv = mlContext.Data.LoadFromEnumerable(data);
    
            var pipeline = tensorFlowModel.ScoreTensorFlowModel(
                new[] { "dense_1/Softmax" }, new[] { "flatten_input" }, addBatchDimensionInput: true);
    
            var model = pipeline.Fit(idv);
    
            var engine = mlContext.Model.CreatePredictionEngine<TensorData, OutputScores>(model);
            var result = engine.Predict(data[0]);
            var maxValue = result.Output.Max();
            var maxIndex = result.Output.ToList().IndexOf(maxValue);
            Console.WriteLine(maxIndex);
        }
    
        private static TensorData[] GetTensorData()
        {
            var data = new double[] {
                0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
    0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.027450980392156862, 0.09411764705882353, 0.5019607843137255, 0.5450980392156862, 0.5411764705882353, 0.7490196078431373, 0.7058823529411765, 0.9921568627450981, 0.7490196078431373, 0.5411764705882353, 0.18823529411764706, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.16862745098039217, 0.1843137254901961, 0.47058823529411764, 0.7294117647058823, 0.9882352941176471, 0.9882352941176471, 0.9921568627450981, 0.9882352941176471, 0.9882352941176471, 0.9882352941176471, 0.9882352941176471, 0.9921568627450981, 0.9882352941176471, 0.8901960784313725, 0.11372549019607843, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.07450980392156863, 0.6431372549019608, 0.9647058823529412, 0.9921568627450981, 0.9882352941176471, 0.9882352941176471, 0.8901960784313725, 0.7176470588235294, 0.7215686274509804, 0.6352941176470588, 0.27058823529411763, 0.27058823529411763, 0.27058823529411763, 0.30980392156862746, 0.8901960784313725, 0.9882352941176471, 0.17647058823529413, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.27450980392156865, 0.9882352941176471, 0.9882352941176471, 0.9921568627450981, 0.9215686274509803, 0.30196078431372547, 0.11372549019607843, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03529411764705882, 0.7607843137254902, 0.8901960784313725, 0.11372549019607843, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.027450980392156862, 0.2549019607843137, 0.5372549019607843, 0.788235294117647, 0.6823529411764706, 0.12549019607843137, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.7098039215686275, 0.9882352941176471, 0.7176470588235294, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03529411764705882, 0.5019607843137255,
    1.0, 0.9764705882352941, 0.45098039215686275, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4470588235294118, 0.9882352941176471, 0.9921568627450981, 0.5176470588235295, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5254901960784314, 0.9411764705882353, 0.9882352941176471, 0.47843137254901963, 0.09803921568627451, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03529411764705882, 0.6509803921568628, 0.9411764705882353, 0.9882352941176471, 0.6588235294117647, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.20784313725490197, 0.7098039215686275, 0.9882352941176471, 0.9882352941176471, 0.4549019607843137, 0.00784313725490196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.027450980392156862, 0.25882352941176473, 0.9529411764705882, 1.0, 0.9764705882352941, 0.24705882352941178, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
    0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2, 0.7294117647058823, 0.9882352941176471, 0.9882352941176471, 0.8549019607843137, 0.29411764705882354, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.19215686274509805, 0.8941176470588236, 0.9882352941176471, 0.9882352941176471, 0.8666666666666667, 0.12549019607843137, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5333333333333333, 0.9137254901960784, 0.9882352941176471, 0.8901960784313725, 0.4666666666666667, 0.09803921568627451, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.12549019607843137, 0.8235294117647058, 0.9803921568627451, 0.9921568627450981, 0.9058823529411765, 0.18823529411764706, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.34901960784313724, 0.8705882352941177, 0.9921568627450981, 0.9921568627450981, 0.6196078431372549, 0.0, 0.0, 0.0, 0.043137254901960784, 0.13333333333333333, 0.4627450980392157, 0.027450980392156862, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6313725490196078, 0.9882352941176471, 0.9882352941176471, 0.41568627450980394, 0.0, 0.03529411764705882, 0.1843137254901961, 0.34901960784313724, 0.796078431372549, 0.9921568627450981, 0.9568627450980393, 0.2196078431372549, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6313725490196078, 0.9882352941176471,
    0.9882352941176471, 0.7450980392156863, 0.7254901960784313, 0.7725490196078432, 0.9882352941176471, 0.9882352941176471, 0.8666666666666667, 0.6784313725490196, 0.2196078431372549, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.47058823529411764, 0.9882352941176471, 0.9882352941176471, 0.9882352941176471, 0.9921568627450981, 0.9882352941176471, 0.9882352941176471, 0.9882352941176471, 0.3764705882352941, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0196078431372549, 0.21176470588235294, 0.5372549019607843, 0.5372549019607843, 0.7450980392156863, 0.5372549019607843, 0.21176470588235294, 0.08627450980392157, 0.00784313725490196, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
    0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
            return new TensorData[] { new TensorData() { Input = data.Select(x=>(float)x).ToArray() }};
        }
    }
    
    public class TensorData
    {
        [ColumnName("flatten_input")]
        [VectorType(28, 28)]
        public float[] Input { get; set; }
    }
    
    class OutputScores
    {
        [ColumnName("dense_1/Softmax")]
        [VectorType(10)]
        public float[] Output { get; set; }
    }
    

    如果不清楚模型中的网络结构,可以用TensorFlowModel的GetModelSchema方法获悉详细的情况。

    调试代码,可以看到结果数组中index为2时,概率最大,所以可以认为最终的预测结果为2。与python脚本的执行结果是一致的。

  • 相关阅读:
    第五天
    第四天
    第三天
    四则运算2
    对于搜狗输入法
    用户及用户场景分析
    总结
    第一阶段总结
    第七天
    第六天
  • 原文地址:https://www.cnblogs.com/kenwoo/p/10902431.html
Copyright © 2011-2022 走看看