zoukankan      html  css  js  c++  java
  • Markdown & LaTex 常用语法

    blog 的目录

    博客园自带目录

    [TOC]
    出现在随笔页面的开始处,可以帮你显示目录,而无需自己配置javascript,但对比下,和自己配置的略有不同,自定义的有 Back to the topGo to page bottom目录编号

    用 javascript 自定义目录

    自定义目录:页面定制CSS代码

    <style type="text/css">
    #cnblogs_post_body
    {
        color: black;
        font: 0.875em/1.5em "微软雅黑" , "PTSans" , "Arial" ,sans-serif;
        font-size: 16px;
    }
    #cnblogs_post_body h2    {
        background: #2B6695;
        border-radius: 6px 6px 6px 6px;
        box-shadow: 0 0 0 1px #5F5A4B, 1px 1px 6px 1px rgba(10, 10, 0, 0.5);
        color: #FFFFFF;
        font-family: "微软雅黑" , "宋体" , "黑体" ,Arial;
        font-size: 17px;
        font-weight: bold;
        height: 25px;
        line-height: 25px;
        margin: 18px 0 !important;
        padding: 8px 0 5px 5px;
        text-shadow: 2px 2px 3px #222222;
    }
    #cnblogs_post_body h3{
        background: #2B6600;
        border-radius: 6px 6px 6px 6px;
        box-shadow: 0 0 0 1px #5F5A4B, 1px 1px 6px 1px rgba(10, 10, 0, 0.5);
        color: #FFFFFF;
        font-family: "微软雅黑" , "宋体" , "黑体" ,Arial;
        font-size: 13px;
        font-weight: bold;
        height: 24px;
        line-height: 23px;
        margin: 12px 0 !important;
        padding: 5px 0 5px 20px;
        text-shadow: 2px 2px 3px #222222;
    }
    #cnblogs_post_body a {
        color: #21759b;
        transition-delay: 0s;
        transition-duration: 0.4s;
        transition-property: all;
        transition-timing-function: linear;
    }
    #cnblogs_post_body a:hover{
        margin-left: 10px
    }
    
    #navCategory a{
        display: block;
        transition: all 1s;
        
    }
    #navCategory a:hover{
        margin-left: 10px
    }
    
    #blog-sidecolumn  a{
        display: block;
        transition:all 1s;
    }
    #blog-sidecolumn a:hover{
        margin-left: 10px
    }
    
    #sidebar_toptags li a{
        float:left;
    }
    #TopViewPostsBlock li a{
        margin-left: 5px;
    }
    #cnblogs_post_body a{
        display: inline-block;
        transition:all 1s;
    }
    </style>
    

    自定义目录:页脚Html代码

    <script language="javascript" type="text/javascript">
    // Generate a directory index list
    // ref: http://www.cnblogs.com/wangqiguo/p/4355032.html
    // ref: https://www.cnblogs.com/xuehaoyue/p/6650533.html
    // modified by: keyshaw
    function GenerateContentList()
    {
        var mainContent = $('#cnblogs_post_body');
    
        //If your chapter title isn't `h2`, You just replace the h2 here.
        var h2_list = $('#cnblogs_post_body h2');
        // var go_to_bottom = '<div style="text-align: right;"><a href="#_page_bottom" style="color:#f68a33">Go to page bottom</a></div>';
        var bottom_label = '<div style="text-align: right;"><a href="#_labelTop" style="color:#f68a33">Back to the top</a><a name="_page_bottom"></a></div>'
    
        if(mainContent.length < 1)
            return;
    
        if(h2_list.length>0)
        {
            var content = '<div style="text-align: right;"><a href="#_page_bottom" style="color:#f68a33">Go to page bottom</a></div><a name="_labelTop"></a>';
            content += '<div id="navCategory" style="color:#152e97;">';
            // coutent += '<div style="text-align: right;"><a href="#_page_bottom" style="color:#f68a33">Go to page bottom</a></div>'
            content += '<h1 style="font-size:16px;background: #f68a33;border-radius: 6px 6px 6px 6px;box-shadow: 0 0 0 1px #5F5A4B, 1px 1px 6px 1px rgba(10, 10, 0, 0.5);color: #FFFFFF;font-size: 17px;font-weight: bold;height: 25px;line-height: 25px;margin: 18px 0 !important;padding: 8px 0 5px 30px;"><b>Catalogue</b></h1>';
            // ol - ordered; ul - unordered
            content += '<ol>';
            for(var i=0; i<h2_list.length; i++)
            {
                // add 'Back to the top' before h2
                var go_to_top_2 = '<div style="text-align: right;"><a href="#_labelTop" style="color:#f68a33">Back to the top</a><a name="_label' + i + '"></a></div>';
                $(h2_list[i]).before(go_to_top_2);
                
                var h3_list = $(h2_list[i]).nextAll("h3");
                
                var li3_content = '';
                for(var j=0; j<h3_list.length; j++)
                {
    
                    var tmp_3 = $(h3_list[j]).prevAll('h2').first();
                    if(!tmp_3.is(h2_list[i]))
                        break;
    
                    var go_to_top_3 = '<div style="text-align: right;"><a href="#_labelTop" style="color:#f68a33">Back to the top</a><a name="_label' + i + '_' + j + '"></a></div>';
                    $(h3_list[j]).before(go_to_top_3);
    
                    // li3_content += '<li><a href="#_label' + i + '_' + j + '"style="font-size:12px;color:#2b6695;">' + $(h3_list[j]).text() + '</a></li>';
    
                    var li4_content = '';
                    var h4_list = $(h3_list[j]).nextAll("h4");
                    for(var k=0; k<h4_list.length; k++)
                    {
                        var tmp_4 = $(h4_list[k]).prevAll('h3').first();
                        if(!tmp_4.is(h3_list[j]))
                            break;
    
                        var go_to_top_4 = '<div style="text-align: right;"><a href="#_labelTop" style="color:#f68a33">Back to the top</a><a name="_label' + i + '_' + j + '_' + k + '"></a></div>';
                        $(h4_list[k]).before(go_to_top_4);
    
                        li4_content += '<li><a href="#_label' + i + '_' + j + '_' + k + '"style="font-size:12px;color:#2b6695;">' + $(h4_list[k]).text() + '</a></li>';
                    }
    
                    
                    if(li4_content.length > 0)
                        li3_content += '<li><a href="#_label' + i + '_' + j + '"style="font-size:12px;color:#2b6695;">' + $(h3_list[j]).text() + '</a><ul>' + li4_content + '</ul></li>';
                    else
                        li3_content += '<li><a href="#_label' + i + '_' + j + '"style="font-size:12px;color:#2b6695;">' + $(h3_list[j]).text() + '</a></li>';
    
                }
    
                var li2_content = '';
                if(li3_content.length > 0)
                    li2_content = '<li><a href="#_label' + i + '"style="font-size:12px;color:#2b6695;">' + $(h2_list[i]).text() + '</a><ul>' + li3_content + '</ul></li>';
                else
                    li2_content = '<li><a href="#_label' + i + '"style="font-size:12px;color:#2b6695;">' + $(h2_list[i]).text() + '</a></li>';
                content += li2_content;
    
            }
            content += '</ol>';
            content += '</div><p>&nbsp;</p>';
            content += '<hr />';
    
            // $(mainContent[0]).prepend(go_to_bottom);
            $(mainContent[0]).prepend(content);
            $(mainContent[0]).append(bottom_label);
        }
    }
    
    GenerateContentList();
    </script>
    
    主标题
    ===
    

    主标题

    副标题
    ---
    

    副标题

    # h1,一级标题

    h1,一级标题

    # h2,二级标题

    h2,二级标题

    # h3,三级标题

    h3,三级标题

    # h4,四级标题

    h4,四级标题

    ## h5,五级标题

    h5,五级标题

    ### h6,六级标题

    h6,六级标题

    注释

    ><space><space><enter>
    这是一段注释
    <space><space><enter>
    **a** : 这是一段注释
    <space><space><enter>
    **b** : 这是一段注释
    


    这是一段注释

    a : 这是一段注释

    b : 这是一段注释

    >这是一段注释
    **a** : 这是一段注释
    **b** : 这是一段注释
    

    这是一段注释
    a : 这是一段注释
    b : 这是一段注释

    常用的符号及文本形式

    $underset{sim}{A}$ : (underset{sim}{Λ})
    $widehat{y}$ : (widehat{y})
    <u>我被下划线了</u> : 我被下划线了
    ~~我被删除线了~~ : 我被删除线了
    $mathrm{d}a$ : (mathrm{d}a)
    $da$ : (da)
    $( ig( Big( igg( Bigg($ : (( ig( Big( igg( Bigg()

    useful links for your LaTeX:
    https://en.wikibooks.org/wiki/LaTeX/Mathematics
    https://math.meta.stackexchange.com/questions/5020/mathjax-basic-tutorial-and-quick-reference
    https://zh.numberempire.com/latexequationeditor.php

    如果你想在markdown中文本缩进

    &emsp;&emsp; here
    &ensp;&ensp;&ensp;&ensp; here
    &nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; here
    

       here
         here
             here

    无序列表

    <ul>
        <li>无序列表1</li>
        <li>无序列表2</li>
        <li>无序列表3</li>
    </ul>
    
    • 无序列表1
    • 无序列表2
    • 无序列表3
    * 无序列表1
    * 无序列表2
    * 无序列表3
    
    • 无序列表1
    • 无序列表2
    • 无序列表3
    + 无序列表4
    + 无序列表5
    + 无序列表6
    
    • 无序列表4
    • 无序列表5
    • 无序列表6
    - 无序列表7
    - 无序列表8
    - 无序列表9
    
    • 无序列表7
    • 无序列表8
    • 无序列表9
    * 呆萌小二郎
      * 23岁
      * 前端工程师
      喜欢看书,撸代码,写博客...
    * 呆萌小二郎2
      * 嘻嘻哈哈
        * 开心
    * 呆萌小二郎3
    
    • 呆萌小二郎
      • 23岁
      • 前端工程师
        喜欢看书,撸代码,写博客...
    • 呆萌小二郎2
      • 嘻嘻哈哈
        • 开心
    • 呆萌小二郎3

    有序列表

    <ol>
        <li>有序列表1</li>
        <li>有序列表2</li>
        <li>有序列表3</li>
    </ol>
    
    1. 有序列表1
    2. 有序列表2
    3. 有序列表3
    1. 有序列表1
    2. 有序列表2
    3. 有序列表3
    
    1. 有序列表1
    2. 有序列表2
    3. 有序列表3
    1. 有序列表1
    1. 有序列表2
    1. 有序列表3
    
    1. 有序列表1
    2. 有序列表2
    3. 有序列表3

    连接跳转

    [呆萌小二郎博客跳转链接](http://blog.zhouminghang.xyz)
    呆萌小二郎博客跳转链接

    度娘一下,你就知道: <http://www.baidu.com>
    度娘一下,你就知道: http://www.baidu.com

    <http://blog.zhouminghang.xyz>
    http://blog.zhouminghang.xyz

    插入图像

    ![xxx](https://timgsa.baidu.com/timg?image&quality=80&size=b9999_10000&sec=1553421507058&di=5171700a9aefd5831ce01b6c0f341436&imgtype=0&src=http%3A%2F%2Fpic175.nipic.com%2Ffile%2F20180711%2F24144945_161350611036_2.jpg)
    xxx

    斜体,加粗,分割线

    *斜体写法1* 和 _斜体写法2_
    斜体写法1斜体写法2

    **加粗写法1** 和 __加粗写法2__
    加粗写法1加粗写法2

    * * *


    ***


    *****************


    - - -


    -----------------


    ---


    单行和多行代码块

    `单行代码`
    单行代码

    ```
    多行代码(
    这里用来转义符号,
    类似于html中单双引号多层嵌套要转义
    )
    ```

    多行代码(
            这里用来转义符号,
            类似于html中单双引号多层嵌套要转义
            )
    

    使用 ag{n} 为公式添加编号

    不使用 egin{align}end{align} 也可以为公式添加标号,可以使用 ag{n}

    $aaa 	ag{1}$
    $bbb 	ag{2}$
    

    (aaa ag{1})
    (bbb ag{2})

    markdown 的表格 和 LaTeX 中的空格

    However, this doesn't give the correct result.
    LaTeX doesn't respect the white-space left in the code to signify that the y and the dx are independent entities.
    Instead, it lumps them altogether.
    A quad would clearly be overkill in this situation—what is needed are some small spaces to be utilized in this type of instance, and that's what LaTeX provides:

    Command|Description|&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; Size
    :---|---|---:
    \,|small space|3/18 of a quad
    \:|medium space|4/18 of a quad
    \;|large space|5/18 of a quad
    \!|negative space|-3/18 of a quad
    
    Command Description         Size
    \, small space 3/18 of a quad
    : medium space 4/18 of a quad
    ; large space 5/18 of a quad
    ! negative space -3/18 of a quad
    **Expected Output**:
    <table style="100%">
    <tr>
    <td> **sigmoid_derivative([1,2,3])**</td>
    <td> [ 0.19661193  0.10499359  0.04517666] </td>
    </tr>
    </table>
    

    Expected Output:

    **sigmoid_derivative([1,2,3])** [ 0.19661193 0.10499359 0.04517666]

    例子汇总

    $$
    egin{align} 
    & underset{w,b}{mathrm{max}} ;; underset{i}{mathrm{min}} ;; frac{2}{||w||} | w^{	op} x_i + b |, \ 
    & mathrm{s.t.} ;;y_i(w^{	op}x_i + b) > 0, ; i = 1,2,...,m.  
    onumber 
    end{align}
    $$
    

    [egin{align} & underset{w,b}{mathrm{max}} ;; underset{i}{mathrm{min}} ;; frac{2}{||w||} | w^{ op} x_i + b |, \ & mathrm{s.t.} ;;y_i(w^{ op}x_i + b) > 0, ; i = 1,2,...,m. onumber end{align} ]


    $$
    egin{align}
    h(x_i)=
    egin{cases}
     1 & 	ext{若  }y_i=1; \
     -1 & 	ext{若  }y_i=-1. \
    end{cases}
    end{align}
    $$
    

    (egin{align}h(x_i)=egin{cases} 1 & ext{若 }y_i=1; \ -1 & ext{若 }y_i=-1. \end{cases}end{align})


    $$
    egin{align}
    h(x_i) := mathrm{sign}(w^T x_i + b), 	ext{ 其中 } w_i in mathbb{R}^d,b in mathbb{R}.
    end{align}
    $$
    

    (egin{align}h(x_i) := mathrm{sign}(w^T x_i + b), ext{ 其中 } w_i in mathbb{R}^d,b in mathbb{R}.end{align})


    $$
    egin{align} 
    forall_{i.} ;; y_i(w^T x_i + b) > 0 
    end{align}
    $$
    

    (egin{align} forall_{i.} ;; y_i(w^T x_i + b) > 0 end{align})


    $$
    egin{align}
     y_i h(x_i) = 1 Leftrightarrow y_i mathrm{sign}(w^T x_i + b) = 1  Leftrightarrow y_i(w^T x_i + b) > 0 
    end{align}
    $$
    

    (egin{align} y_i h(x_i) = 1 Leftrightarrow y_i mathrm{sign}(w^T x_i + b) = 1 Leftrightarrow y_i(w^T x_i + b) > 0 end{align})


    $$
    egin{align}
     frac{1}{||w||} | w^{	op} p + b |
    end{align}
    $$
    

    (egin{align} frac{1}{||w||} | w^{ op} p + b |end{align})


    $$
    egin{align}
     w^{	op}(x_1-x_2) = w^{	op}x_1-w^{	op}x_2=(-b)-(-b)=0,
    end{align}
    $$
    

    (egin{align} w^{ op}(x_1-x_2) = w^{ op}x_1-w^{ op}x_2=(-b)-(-b)=0,end{align})


    (w perp (x_1 - x_2))


    $$
    egin{align}
     mathrm{proj}_w(p-x) 
     &= ||p-x|| cdot |cos (w, p - x)| 
    onumber\ 
     &= ||p-x|| cdot frac{|w^{	op}(p-x)|}{||w|| cdot ||p-x||} 
    onumber \
     &= frac{1}{||w||} |w^{	op}p - w^{	op}x| 
    onumber \ 
     &= frac{1}{||w||} | w^{	op}p + b | 
    end{align}
    $$
    

    (egin{align} mathrm{proj}_w(p-x) &= ||p-x|| cdot |cos (w, p - x)| onumber\ &= ||p-x|| cdot frac{|w^{ op}(p-x)|}{||w|| cdot ||p-x||} onumber \ &= frac{1}{||w||} |w^{ op}p - w^{ op}x| onumber \ &= frac{1}{||w||} | w^{ op}p + b | end{align})


    $$
    gamma := 2 ; underset{i}{mathrm{min}} frac{1}{||w||} | w^{	op} x_i + b |
    $$
    

    (gamma := 2 ; underset{i}{mathrm{min}} frac{1}{||w||} | w^{ op} x_i + b |)


    $$
    egin{align} 
    & underset{u}{mathrm{min}} ;; frac{1}{2} u^{	op}Qu+t^{	op}u \ 
    & mathrm{s.t.} ;; c_i^{	op} u geq d_i, ; i = 1,2,...,m.  
    onumber 
    end{align}
    $$
    

    [egin{align} & underset{u}{mathrm{min}} ;; frac{1}{2} u^{ op}Qu+t^{ op}u \ & mathrm{s.t.} ;; c_i^{ op} u geq d_i, ; i = 1,2,...,m. onumber end{align} ]


    $$
    egin{align} 
    & underset{u}{mathrm{min}} ;; frac{1}{2} u^{	op}Qu+t^{	op}u \ 
    & mathrm{s.t.} ;; c_i^{	op} u geq d_i, ; i = 1,2,...,m.  
    onumber 
    end{align}
    $$
    

    [egin{align} & underset{u}{mathrm{min}} ;; frac{1}{2} u^{ op}Qu+t^{ op}u \ & mathrm{s.t.} ;; c_i^{ op} u geq d_i, ; i = 1,2,...,m. onumber end{align} ]


    $$
    egin{align}
    frac{2}{||rw^*||} | (rw^*)^{	op} x_i + rb^* | = frac{2}{||w^*||} | w^{*	op} x_i + b^* |, \
    y_i ig( (rw^*)^{	op} x_i + rb^* ig) > 0 Leftrightarrow  y_i (w^{*	op} x_i + b^*)>0.
    end{align}
    $$
    

    [egin{align} frac{2}{||rw^*||} | (rw^*)^{ op} x_i + rb^* | = frac{2}{||w^*||} | w^{* op} x_i + b^* |, \ y_i ig( (rw^*)^{ op} x_i + rb^* ig) > 0 Leftrightarrow y_i (w^{* op} x_i + b^*)>0. end{align} ]


    $$
    egin{align}
    underset{i}{mathrm{min}} ; | w^{	op} x_i + b | = 1.
    end{align}
    $$
    

    [egin{align} underset{i}{mathrm{min}} ; | w^{ op} x_i + b | = 1. end{align} ]


    $$
    egin{align} 
    & underset{w, b}{mathrm{min}} ;; frac{1}{2} w^{	op} w \ 
    & mathrm{s.t.} ;; y_i (w^{	op} x_i +b ) geq 1, ; i = 1,2,...,m.  
    onumber 
    end{align}
    $$
    

    [egin{align} & underset{w, b}{mathrm{min}} ;; frac{1}{2} w^{ op} w \ & mathrm{s.t.} ;; y_i (w^{ op} x_i +b ) geq 1, ; i = 1,2,...,m. onumber end{align} ]


    $$
    egin{align} 
    & underset{w, b}{mathrm{min}} ;; frac{1}{2} w^{	op} w \ 
    & mathrm{s.t.} ;; underset{i}{mathrm{min}} ;;  y_i (w^{	op} x_i +b ) = 1. 
    onumber 
    end{align}
    $$
    

    [egin{align} & underset{w, b}{mathrm{min}} ;; frac{1}{2} w^{ op} w \ & mathrm{s.t.} ;; underset{i}{mathrm{min}} ;; y_i (w^{ op} x_i +b ) = 1. onumber end{align} ]


    $$
    egin{align} 
    underset{w, b}{mathrm{argmin}} ;; frac{1}{2} w^{	op} w 
    & = underset{w, b}{mathrm{argmin}} ;; frac{1}{2} ||w|| 
    onumber\
    & = underset{w, b}{mathrm{argmax}} ;; frac{2}{||w||} cdot 1 
    onumber\
    & = underset{w, b}{mathrm{argmax}} ;; Big( underset{i}{mathrm{min}} ; frac{2}{||w||} y_i (w^{	op} x_i + b) Big) 
    onumber\
    & = underset{w, b}{mathrm{argmax}} ;; Big( underset{i}{mathrm{min}} ; frac{2}{||w||} |w^{	op} x_i + b| Big) 
    end{align}
    $$
    

    [egin{align} underset{w, b}{mathrm{argmin}} ;; frac{1}{2} w^{ op} w & = underset{w, b}{mathrm{argmin}} ;; frac{1}{2} ||w|| onumber\ & = underset{w, b}{mathrm{argmax}} ;; frac{2}{||w||} cdot 1 onumber\ & = underset{w, b}{mathrm{argmax}} ;; Big( underset{i}{mathrm{min}} ; frac{2}{||w||} y_i (w^{ op} x_i + b) Big) onumber\ & = underset{w, b}{mathrm{argmax}} ;; Big( underset{i}{mathrm{min}} ; frac{2}{||w||} |w^{ op} x_i + b| Big) end{align} ]


    $$
    egin{align}
    u := egin{bmatrix}  w \ b end{bmatrix}, Q := egin{bmatrix}  I&0\0&0 end{bmatrix}, t := 0, \
    c_i := y_i egin{bmatrix}  x_i \ 1 end{bmatrix}, d_i := 1,
    end{align}
    $$
    

    [egin{align} u := egin{bmatrix} w \ b end{bmatrix}, Q := egin{bmatrix} I&0\0&0 end{bmatrix}, t := 0, \ c_i := y_i egin{bmatrix} x_i \ 1 end{bmatrix}, d_i := 1, end{align} ]


    $$
    egin{align}
    underset{u}{mathrm{min}} &;; f(u) &\
    mathrm{s.t.} &;; g_i (u) leq 0, &i = 1,2,...,m, 
    onumber\
                         & ;; h_j (u) = 0, &j = 1,2,...,n, 
    onumber
    end{align}
    $$
    

    [egin{align} underset{u}{mathrm{min}} &;; f(u) &\ mathrm{s.t.} &;; g_i (u) leq 0, &i = 1,2,...,m, onumber\ & ;; h_j (u) = 0, &j = 1,2,...,n, onumber end{align} ]


    $$
    egin{align}
    mathcal{L}(u,alpha,eta) := f(u) + sumlimits_{i=1}^{m} alpha_i g_i (u) + sumlimits_{j=1}^{n} eta_j h_j (u)
    end{align}
    $$
    

    [egin{align} mathcal{L}(u,alpha,eta) := f(u) + sumlimits_{i=1}^{m} alpha_i g_i (u) + sumlimits_{j=1}^{n} eta_j h_j (u) end{align} ]


    $$
    egin{align}
    underset{u}{mathrm{min}} ;; underset{alpha, eta}{mathrm{max}} ;;& mathcal{L} (u, alpha, eta) \
    mathrm{s.t.} ;;;;;;& alpha_i geq 0, ;; i = 1,2,...,m. 
    onumber
    end{align}
    $$
    

    [egin{align} underset{u}{mathrm{min}} ;; underset{alpha, eta}{mathrm{max}} ;;& mathcal{L} (u, alpha, eta) \ mathrm{s.t.} ;;;;;;& alpha_i geq 0, ;; i = 1,2,...,m. onumber end{align} ]


    $$
    egin{align}
    & underset{u}{mathrm{min}} ;; underset{alpha, eta}{mathrm{max}} ;; mathcal{L} (u, alpha, eta) 
    onumber \
    = & underset{u}{mathrm{min}} Bigg( f(u) + underset{alpha, eta}{mathrm{max}} Big(  sumlimits_{i=1}^{m} alpha_i g_i (u) + sumlimits_{j=1}^{n} eta_j h_j (u) Big)Bigg) 
    onumber \
    = & underset{u}{mathrm{min}} Bigg( f(u) + egin{cases} 0 & 	ext{若 } u 	ext{ 满足约束;} \ infty & 	ext{否则} end{cases} Bigg) 
    onumber \
    = & underset{u}{mathrm{min}} ; f(u), 	ext{ 且 } u 	ext{ 满足约束,}
    end{align}
    $$
    

    [egin{align} & underset{u}{mathrm{min}} ;; underset{alpha, eta}{mathrm{max}} ;; mathcal{L} (u, alpha, eta) onumber \ = & underset{u}{mathrm{min}} Bigg( f(u) + underset{alpha, eta}{mathrm{max}} Big( sumlimits_{i=1}^{m} alpha_i g_i (u) + sumlimits_{j=1}^{n} eta_j h_j (u) Big)Bigg) onumber \ = & underset{u}{mathrm{min}} Bigg( f(u) + egin{cases} 0 & ext{若 } u ext{ 满足约束;} \ infty & ext{否则} end{cases} Bigg) onumber \ = & underset{u}{mathrm{min}} ; f(u), ext{ 且 } u ext{ 满足约束,} end{align} ]


    $$
    egin{align}
    underset{alpha, eta}{mathrm{max}} ;; underset{u}{mathrm{min}} ;;& mathcal{L} (u, alpha, eta) \
    mathrm{s.t.} ;;;;;;& alpha_i geq 0, ;; i = 1,2,...,m. 
    onumber
    end{align}
    $$
    

    [egin{align} underset{alpha, eta}{mathrm{max}} ;; underset{u}{mathrm{min}} ;;& mathcal{L} (u, alpha, eta) \ mathrm{s.t.} ;;;;;;& alpha_i geq 0, ;; i = 1,2,...,m. onumber end{align} ]


    $$
    egin{align}
    underset{alpha, eta}{mathrm{max}} ;; underset{u}{mathrm{min}} ;; mathcal{L} (u, alpha, eta) ;; leq ;; underset{u}{mathrm{min}} ;; underset{alpha, eta}{mathrm{max}} ;; mathcal{L} (u, alpha, eta)
    end{align}
    $$
    

    [egin{align} underset{alpha, eta}{mathrm{max}} ;; underset{u}{mathrm{min}} ;; mathcal{L} (u, alpha, eta) ;; leq ;; underset{u}{mathrm{min}} ;; underset{alpha, eta}{mathrm{max}} ;; mathcal{L} (u, alpha, eta) end{align} ]


    $$
    egin{align}
    mathcal{L}(w,b,alpha) := frac{1}{2}w^{	op}w + sumlimits_{i=1}^{m}alpha_i ig(1- 
    y_i (w^{	op} x_i + b) ig)
    end{align}
    $$
    

    [egin{align} mathcal{L}(w,b,alpha) := frac{1}{2}w^{ op}w + sumlimits_{i=1}^{m}alpha_i ig(1- y_i (w^{ op} x_i + b) ig) end{align} ]


    $$
    egin{align}
    underset{alpha}{mathrm{max}} ; underset{w,b}{mathrm{min}} ; & frac{1}{2}w^{	op}w + sumlimits_{i=1}^{m}alpha_i ig(1- y_i (w^{	op} x_i + b) ig) \
    mathrm{s.t.} ;;;;;; & alpha_i geq 0, ; i = 1,2,...,m. 
    onumber
    end{align}
    $$
    

    [egin{align} underset{alpha}{mathrm{max}} ; underset{w,b}{mathrm{min}} ; & frac{1}{2}w^{ op}w + sumlimits_{i=1}^{m}alpha_i ig(1- y_i (w^{ op} x_i + b) ig) \ mathrm{s.t.} ;;;;;; & alpha_i geq 0, ; i = 1,2,...,m. onumber end{align} ]


    $$
    egin{align}
    underset{alpha}{mathrm{min}} ;; & frac{1}{2} sumlimits_{i=1}^{m} sumlimits_{j=1}^{m} alpha_i alpha_j y_i y_j x_i^{	op} x_j - sumlimits_{i=1}^{m}alpha_i \
    mathrm{s.t.} ;;; & sumlimits_{i=1}^{m} alpha_i y_i = 0, 
    onumber \
    & alpha_i geq 0, ; i = 1,2,...,m. 
    onumber
    end{align}
    $$
    

    [egin{align} underset{alpha}{mathrm{min}} ;; & frac{1}{2} sumlimits_{i=1}^{m} sumlimits_{j=1}^{m} alpha_i alpha_j y_i y_j x_i^{ op} x_j - sumlimits_{i=1}^{m}alpha_i \ mathrm{s.t.} ;;; & sumlimits_{i=1}^{m} alpha_i y_i = 0, onumber \ & alpha_i geq 0, ; i = 1,2,...,m. onumber end{align} ]


    $$
    egin{align}
    frac{partial mathcal{L}}{partial w} = 0 Leftrightarrow & w = sumlimits_{i=1}^{m} alpha_i y_i x_i, \
    frac{partial mathcal{L}}{partial b} = 0 Leftrightarrow & sumlimits_{i=1}^{m} alpha_i y_i.
    end{align}
    $$
    

    [egin{align} frac{partial mathcal{L}}{partial w} = 0 Leftrightarrow & w = sumlimits_{i=1}^{m} alpha_i y_i x_i, \ frac{partial mathcal{L}}{partial b} = 0 Leftrightarrow & sumlimits_{i=1}^{m} alpha_i y_i. end{align} ]


    $$
    egin{align}
    & u:=alpha,;mathcal{Q}:=[y_i y_j x_i^{	op} x_j]_{m 	imes m},;t:=-1,\
    & c_i:=e_i,;d_i:=0,; i=1,2,...,m,\
    & c_{m+1}:=[y_1;y_2; cdots ; y_m]^{	op} , ; d_{m+1}:=0,\
    & c_{m+2}:=-[y_1;y_2; cdots ; y_m]^{	op}, ; d_{m+2}:=0,
    end{align}
    $$
    

    [egin{align} & u:=alpha,;mathcal{Q}:=[y_i y_j x_i^{ op} x_j]_{m imes m},;t:=-1,\ & c_i:=e_i,;d_i:=0,; i=1,2,...,m,\ & c_{m+1}:=[y_1;y_2; cdots ; y_m]^{ op} , ; d_{m+1}:=0,\ & c_{m+2}:=-[y_1;y_2; cdots ; y_m]^{ op}, ; d_{m+2}:=0, end{align} ]


    $$
    egin{align}
    u:=egin{bmatrix} w \ b end{bmatrix}, ;; g_i(u):= 1-y_i {egin{bmatrix} x_i \ 1 end{bmatrix}}^{	op} u,
    end{align}
    $$
    

    [egin{align} u:=egin{bmatrix} w \ b end{bmatrix}, ;; g_i(u):= 1-y_i {egin{bmatrix} x_i \ 1 end{bmatrix}}^{ op} u, end{align} ]


    $$
    egin{align}
    w = & sumlimits_{i=1}^{m}alpha_i y_i x_i 
    onumber \
        = & sumlimits_{i:;alpha_i = 0}^{m} 0 cdot y_i x_i + sumlimits_{i:;alpha_i>0}^{m}alpha_i y_i x_i 
    onumber \
        = &  sumlimits_{i in SV}^{}alpha_i y_i x_i,
    end{align}
    $$
    

    [egin{align} w = & sumlimits_{i=1}^{m}alpha_i y_i x_i onumber \ = & sumlimits_{i:;alpha_i = 0}^{m} 0 cdot y_i x_i + sumlimits_{i:;alpha_i>0}^{m}alpha_i y_i x_i onumber \ = & sumlimits_{i in SV}^{}alpha_i y_i x_i, end{align} ]


    $$
    egin{align}
    & y_s(w^{	op} x_s + b) = 1, 	ext{ 则} 
    onumber \
    & b = y_s - w^{	op} x_s = y_s - sumlimits_{i in SV} alpha_i y_i x_i^{	op} x_s.
    end{align}
    $$
    

    [egin{align} & y_s(w^{ op} x_s + b) = 1, ext{ 则} onumber \ & b = y_s - w^{ op} x_s = y_s - sumlimits_{i in SV} alpha_i y_i x_i^{ op} x_s. end{align} ]


    $$
    egin{align}
    h(x) = mathrm{sign} Big( sumlimits_{i in SV} alpha_i y_i x_i^{	op} x + b Big).
    end{align}
    $$
    

    [egin{align} h(x) = mathrm{sign} Big( sumlimits_{i in SV} alpha_i y_i x_i^{ op} x + b Big). end{align} ]


    $$
    egin{align}
    underset{w,b}{mathrm{min}} ;; & frac{1}{2} w^{	op} w \
    mathrm{s.t.} ;; & y_i(w^{	op}phi(x_i) + b)geq1,;i=1,2,...,m; 
    onumber \ 
    onumber \ 
    onumber \
    underset{alpha}{mathrm{min}} ;; & frac{1}{2} sumlimits_{i=1}^{m}sumlimits_{j=1}^{m}alpha_ialpha_jy_iy_jphi(x_i)^{	op}phi(x_j)-sumlimits_{i=1}^{m}alpha_i \
    mathrm{s.t.} ;; & sumlimits_{i=1}^{m}alpha_iy_i = 0, 
    onumber \
    &alpha_i geq 0, ; i=1,2,...,m. 
    onumber
    end{align}
    $$
    

    [egin{align} underset{w,b}{mathrm{min}} ;; & frac{1}{2} w^{ op} w \ mathrm{s.t.} ;; & y_i(w^{ op}phi(x_i) + b)geq1,;i=1,2,...,m; onumber \ onumber \ onumber \ underset{alpha}{mathrm{min}} ;; & frac{1}{2} sumlimits_{i=1}^{m}sumlimits_{j=1}^{m}alpha_ialpha_jy_iy_jphi(x_i)^{ op}phi(x_j)-sumlimits_{i=1}^{m}alpha_i \ mathrm{s.t.} ;; & sumlimits_{i=1}^{m}alpha_iy_i = 0, onumber \ &alpha_i geq 0, ; i=1,2,...,m. onumber end{align} ]


    $egin{align}kappa(x_i, x_j)=phi (x_i)^T phi (x_j),end{align}$
    

    (egin{align}kappa(x_i, x_j)=phi (x_i)^T phi (x_j),end{align})


    $$
    egin{align}
    phi : x mapsto exp(-x^2) egin{bmatrix} 1\ sqrt{frac{2}{1}}x \ sqrt{frac{2^2}{2!}}x^2 \ vdots end{bmatrix}
    end{align}
    $$
    

    [egin{align} phi : x mapsto exp(-x^2) egin{bmatrix} 1\ sqrt{frac{2}{1}}x \ sqrt{frac{2^2}{2!}}x^2 \ vdots end{bmatrix} end{align} ]


    $$
    egin{align}
    kappa(x_i,x_j):=expBig(-(x_i - x_j)^2Big).
    end{align}
    $$
    

    [egin{align} kappa(x_i,x_j):=expBig(-(x_i - x_j)^2Big). end{align} ]


    $$
    egin{align}
    kappa(x_i,x_j) 
    &= expBig(-(x_i - x_j)^2Big) 
    onumber \
    &= exp(-x_i^2)exp(-x_j^2)exp(2x_ix_j) 
    onumber \
    &= exp(-x_i^2)exp(-x_j^2)sumlimits_{k=0}^{infty}frac{(2x_ix_j)^k}{k!} 
    onumber \
    &= sumlimits_{k=0}^{infty}Bigg(exp(-x_i^2)sqrt{frac{2^k}{k!}}x_i^kBigg)Bigg(exp(-x_j^2)sqrt{frac{2^k}{k!}}x_j^kBigg) 
    onumber \
    &=  phi(x_i)^{	op}phi(x_j).
    end{align}
    $$
    

    [egin{align} kappa(x_i,x_j) &= expBig(-(x_i - x_j)^2Big) onumber \ &= exp(-x_i^2)exp(-x_j^2)exp(2x_ix_j) onumber \ &= exp(-x_i^2)exp(-x_j^2)sumlimits_{k=0}^{infty}frac{(2x_ix_j)^k}{k!} onumber \ &= sumlimits_{k=0}^{infty}Bigg(exp(-x_i^2)sqrt{frac{2^k}{k!}}x_i^kBigg)Bigg(exp(-x_j^2)sqrt{frac{2^k}{k!}}x_j^kBigg) onumber \ &= phi(x_i)^{ op}phi(x_j). end{align} ]


    $$
    egin{align}
    K := [kappa(x_i,x_j)]_{m 	imes m}
    end{align}
    $$
    

    [egin{align} K := [kappa(x_i,x_j)]_{m imes m} end{align} ]


    $$
    egin{align}
    Phi:=[phi(x_1);phi(x_2);ldots;phi(x_m)] in mathbb{R}^{	ilde{d} 	imes m},
    end{align}
    $$
    

    [egin{align} Phi:=[phi(x_1);phi(x_2);ldots;phi(x_m)] in mathbb{R}^{ ilde{d} imes m}, end{align} ]


    $$
    egin{align}
    c_1 kappa_1(x_i,x_j)+c_2 kappa_2 (x_i,x_j) = {egin{bmatrix} sqrt{c_1}phi_1(x_i) \ sqrt{c_2}phi_2(x_i) end{bmatrix}}^{	op} egin{bmatrix} sqrt{c_1}phi_1(x_i) \ sqrt{c_2}phi_2(x_i) end{bmatrix}\
    kappa_1(x_i,x_j)kappa_2(x_i,x_j)=mathrm{vec}ig(phi_1(x_i)phi_2(x_i)^{	op}ig)^{	op}mathrm{vec}ig(phi_1(x_j)phi_2(x_j)^{	op}ig)^{	op},\
    f(x_1)kappa_1(x_i,x_j)f(x_2)=ig(f(x_i)phi(x_i)^{	op}ig)^{	op}ig(f(x_j)phi(x_j)ig).
    end{align}
    $$
    

    [egin{align} c_1 kappa_1(x_i,x_j)+c_2 kappa_2 (x_i,x_j) = {egin{bmatrix} sqrt{c_1}phi_1(x_i) \ sqrt{c_2}phi_2(x_i) end{bmatrix}}^{ op} egin{bmatrix} sqrt{c_1}phi_1(x_i) \ sqrt{c_2}phi_2(x_i) end{bmatrix}\ kappa_1(x_i,x_j)kappa_2(x_i,x_j)=mathrm{vec}ig(phi_1(x_i)phi_2(x_i)^{ op}ig)^{ op}mathrm{vec}ig(phi_1(x_j)phi_2(x_j)^{ op}ig)^{ op},\ f(x_1)kappa_1(x_i,x_j)f(x_2)=ig(f(x_i)phi(x_i)^{ op}ig)^{ op}ig(f(x_j)phi(x_j)ig). end{align} ]


    $m+	ilde{d}+1$ 
    

    (m+ ilde{d}+1)


    $$
    overbrace{
    left[ egin{array}{c} ...W^{[1]T}{1}... ...W^{[1]T}{2}... ...W^{[1]T}{3}... ...W^{[1]T}{4}... end{array} 
    ight]
    }^{W^{[1]}}
    *
    overbrace{
    left[ egin{array}{c} x_1 x_2 x_3 end{array} 
    ight]
    }^{input}
    +
    overbrace{
    left[ egin{array}{c} b^{[1]}_1 b^{[1]}_2 b^{[1]}_3 b^{[1]}_4 end{array} 
    ight]
    }^{b^{[1]}}
    $$
    

    [overbrace{ left[ egin{array}{c} ...W^{[1]T}{1}... ...W^{[1]T}{2}... ...W^{[1]T}{3}... ...W^{[1]T}{4}... end{array} ight] }^{W^{[1]}} * overbrace{ left[ egin{array}{c} x_1 x_2 x_3 end{array} ight] }^{input} + overbrace{ left[ egin{array}{c} b^{[1]}_1 b^{[1]}_2 b^{[1]}_3 b^{[1]}_4 end{array} ight] }^{b^{[1]}} ]


    $$
    Z^{[1]}=
    overbrace{
    egin{bmatrix}
    cdots w^{[1]T}_1 cdots \
    cdots w^{[1]T}_2 cdots \
    cdots w^{[1]T}_3 cdots \
    cdots w^{[1]T}_4 cdots
    end{bmatrix}
    }^{W^{[1]},; (4 	imes 3)}
    egin{bmatrix}
    x_1 \
    x_2 \
    x_3
    end{bmatrix}
    +
    overbrace{
    egin{bmatrix}
    b^{[1]}_1 \
    b^{[1]}_2 \
    b^{[1]}_3 \
    b^{[1]}_4
    end{bmatrix}
    }^{b^{[1]},; (4 	imes 1)}
    =
    egin{bmatrix}
    w^{[1]T}_1 x + b^{[1]}_1 \
    w^{[1]T}_2 x + b^{[1]}_2 \
    w^{[1]T}_3 x + b^{[1]}_3 \
    w^{[1]T}_4 x + b^{[1]}_4 
    end{bmatrix}
    =
    underbrace{
    egin{bmatrix}
    z^{[1]}_1 \
    z^{[1]}_2 \
    z^{[1]}_3 \
    z^{[1]}_4
    end{bmatrix}
    }_{z^{[1]}}
    $$
    

    [Z^{[1]}= overbrace{ egin{bmatrix} cdots w^{[1]T}_1 cdots \ cdots w^{[1]T}_2 cdots \ cdots w^{[1]T}_3 cdots \ cdots w^{[1]T}_4 cdots end{bmatrix} }^{W^{[1]},; (4 imes 3)} egin{bmatrix} x_1 \ x_2 \ x_3 end{bmatrix} + overbrace{ egin{bmatrix} b^{[1]}_1 \ b^{[1]}_2 \ b^{[1]}_3 \ b^{[1]}_4 end{bmatrix} }^{b^{[1]},; (4 imes 1)} = egin{bmatrix} w^{[1]T}_1 x + b^{[1]}_1 \ w^{[1]T}_2 x + b^{[1]}_2 \ w^{[1]T}_3 x + b^{[1]}_3 \ w^{[1]T}_4 x + b^{[1]}_4 end{bmatrix} = underbrace{ egin{bmatrix} z^{[1]}_1 \ z^{[1]}_2 \ z^{[1]}_3 \ z^{[1]}_4 end{bmatrix} }_{z^{[1]}} ]


  • 相关阅读:
    python爬虫简单代码爬取郭德纲单口相声
    WordPress 新版本中编辑器不好用, 使用原有编辑器
    hexo博客更新主题后上传Git操作
    Flask的Context(上下文)学习笔记
    Flask 中的 特殊装饰器before_request/after_request
    Flask 中的 CBV 与上传文件
    Flask 中的蓝图(BluePrint)
    【openresty】获取post请求数据FormInputNginxModule模块
    【随笔】Linux服务器备份相关
    【WMware】关于VMware服务器虚拟化管理之服务器容量扩充
  • 原文地址:https://www.cnblogs.com/kershaw/p/10588152.html
Copyright © 2011-2022 走看看