zoukankan      html  css  js  c++  java
  • POJ-2104 K-th Number(主席树)

    K-th Number
    Time Limit: 20000MS   Memory Limit: 65536K
    Total Submissions: 60557   Accepted: 21228
    Case Time Limit: 2000MS

    Description

    You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
    That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
    For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

    Input

    The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
    The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given. 
    The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

    Output

    For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

    Sample Input

    7 3
    1 5 2 6 3 7 4
    2 5 3
    4 4 1
    1 7 3

    Sample Output

    5
    6
    3

    Hint

    This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.

    Source

    Northeastern Europe 2004, Northern Subregion
     
    终于攻克主席树第一个难关:) 这题额外的学会了stl的二分,stl的去重还有stl的离散化:> 反正收获多多啦
    最后查询的时候应该是work(y)-work(x-1)才行,我一开始是work(y)-work(x)然后只在work里面的一个地方用了x-1所以错了,很尴尬
     1 #include <cstdio>
     2 #include <cmath>
     3 #include <cstdlib>
     4 #include <queue>
     5 #include <iostream>
     6 #include "algorithm"
     7 using namespace std;
     8 typedef long long LL;
     9 const int MAX=1e5+5;
    10 int n,m;
    11 int a[MAX],b[MAX],lb,root[MAX],cnt;
    12 struct Node{
    13     int l,r;
    14     int sum;
    15     Node (){l=r=sum=0;}
    16 }t[MAX*40];
    17 inline int read(){
    18     int an=0,x=1;char c=getchar();
    19     while (c<'0' || c>'9') {if (c=='-') x=-1;c=getchar();}
    20     while (c>='0' && c<='9') {an=an*10+c-'0';c=getchar();}
    21     return an*x;
    22 }
    23 void update(int l,int r,int &x,int y,int pos){
    24     t[++cnt]=t[y],t[cnt].sum++;x=cnt;
    25     if (l==r) return;
    26     int mid=(l+r)>>1;
    27     if (pos<=mid) update(l,mid,t[x].l,t[y].l,pos);
    28     else update(mid+1,r,t[x].r,t[y].r,pos);
    29 }
    30 int query(int l,int r,int x,int y,int k){
    31     if (l==r) return l;
    32     int sum=t[t[y].l].sum-t[t[x].l].sum;
    33     int mid=(l+r)>>1;
    34     if (sum>=k) return query(l,mid,t[x].l,t[y].l,k);
    35     else return query(mid+1,r,t[x].r,t[y].r,k-sum);
    36 }
    37 int main(){
    38     freopen ("chairman.in","r",stdin);
    39     freopen ("chairman.out","w",stdout);
    40     int i,j;
    41     int x,y,z;
    42     n=read();m=read();
    43     for (i=1;i<=n;i++){a[i]=read();b[i]=a[i];}sort(b+1,b+n+1);
    44     lb=unique(b+1,b+n+1)-(b+1);
    45     for (i=1;i<=n;i++){
    46         int pos=lower_bound(b+1,b+lb+1,a[i])-b;
    47         update(1,lb,root[i],root[i-1],pos);
    48     }
    49     for (i=1;i<=m;i++){
    50         x=read();y=read();z=read();
    51         printf("%d
    ",b[query(1,lb,root[x-1],root[y],z)]);
    52     }
    53     return 0;
    54 }
    未来是什么样,未来会发生什么,谁也不知道。 但是我知道, 起码从今天开始努力, 肯定比从明天开始努力, 要快一天实现梦想。 千里之行,始于足下! ——《那年那兔那些事儿》
  • 相关阅读:
    axios的数据请求方式及跨域
    vuex 的介绍
    返回顶部的过渡式写法
    数据结构和算法——二叉树
    RecyclerView的刷新和加载更多
    希尔排序小结
    选择排序小结
    插入排序小结
    冒泡、快速排序小结
    数据结构和算法——递归算法
  • 原文地址:https://www.cnblogs.com/keximeiruguo/p/7599755.html
Copyright © 2011-2022 走看看